SBOS458H December   2008  – June 2015 THS4521 , THS4522 , THS4524

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: VS+ - VS- = 3.3 V
    6. 7.6 Electrical Characteristics: VS+ - VS- = 5 V
    7. 7.7 Typical Characteristics
    8. 7.8 Typical Characteristics: VS+ - VS- = 3.3 V
    9. 7.9 Typical Characteristics: 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Frequency Response
      2. 8.3.2  Distortion
      3. 8.3.3  Slew Rate, Transient Response, Settling Time, Output Impedance, Overdrive, Output Voltage, and Turn-On/Turn-Off Time
      4. 8.3.4  Common-Mode and Power-Supply Rejection
      5. 8.3.5  VOCM Input
      6. 8.3.6  Typical Performance Variation With Supply VoltageTypical Performance Variation with Supply Voltage section
      7. 8.3.7  title of Single-Supply Operation sectionSingle-Supply Operation
      8. 8.3.8  Low-Power Applications and the Effects of Resistor Values on Bandwidth
      9. 8.3.9  Frequency Response Variation due to Package Options
      10. 8.3.10 Driving Capacitive Loads
      11. 8.3.11 Audio Performance
      12. 8.3.12 Audio On/Off Pop Performance
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation from Single-Ended Sources to Differential Outputs
        1. 8.4.1.1 AC-Coupled Signal Path Considerations for Single-Ended Input to Differential Output Conversion
        2. 8.4.1.2 DC-Coupled Input Signal Path Considerations for Single-Ended to Differential Conversion
        3. 8.4.1.3 Resistor Design Equations for the Single-Ended to Differential Configuration of the FDA
        4. 8.4.1.4 Input Impedance for the Single-Ended to Differential FDA Configuration
      2. 8.4.2 Differential-Input to Differential-Output Operation
        1. 8.4.2.1 AC-Coupled, Differential-Input to Differential-Output Design Issues
    5. 8.5 Programming
      1. 8.5.1 Input Common-Mode Voltage Range
        1. 8.5.1.1 Setting the Output Common-Mode Voltage
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Audio ADC Driver Performance: THS4521 and PCM4204 Combined Performance
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Audio ADC Driver Performance: THS4521 and PCM3168 Combined Performance
        3. 9.2.1.3 Application Curves
      2. 9.2.2 ADC Driver Performance: THS4521 and ADS1278 Combined Performance
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 ADC Driver Performance: THS4521 and ADS8321 Combined Performance
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Differential Input to Differential Output Amplifier
      4. 9.2.4 Single-Ended Input to Differential Output Amplifier
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

5 Device Comparison Table

These fully differential amplifiers feature accurate output common-mode control that allows for dc-coupling when driving analog-to-digital converters (ADCs). This control, coupled with an input common-mode range below the negative rail as well as rail-to-rail output, allows for easy interfacing between single-ended, ground-referenced signal sources. Additionally, these devices are ideally suited for driving both successive-approximation register (SAR) and delta-sigma (ΔΣ) ADCs using only a single +2.5V to +5V and ground power supply.

The THS4521, THS4522, and THS4524 family of fully differential amplifiers is characterized for operation over the full industrial temperature range from –40°C to +85°C. Table 1 shows a comparison of the THS4521 device to similar TI devices.

Table 1. THS4521 Device Comparison

DEVICE BW
(MHz)
IQ
(mA)
THD (dBc)
AT 100 kHz
VN
(nV/√Hz)
RAIL-TO-RAIL DUAL PART NUMBERS
THS4531 36 0.25 –104 10.0 Neg In, Out
THS4521 145 0.95 –102 4.6 Neg In, Out THS4522
THS4520 620 14.2 –107 2.0 Out
THS4541 850 10.1 –137 2.2 Neg In, Out