SBOS923I December   2017  – July 2024 LMV321A , LMV324A , LMV358A

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Functions and Configurations
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information: LMV321A
    5. 5.5 Thermal Information: LMV358A
    6. 5.6 Thermal Information: LMV324A
    7. 5.7 Electrical Characteristics
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Operating Voltage
      2. 6.3.2 Input Common Mode Range
      3. 6.3.3 Rail-to-Rail Output
      4. 6.3.4 Overload Recovery
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 LMV3xxA Low-Side, Current Sensing Application
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curve
      2. 7.2.2 Single-Supply Photodiode Amplifier
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
      1. 7.3.1 Input and ESD Protection
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Typical Characteristics

at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)

LMV321A LMV358A LMV324A IB and IOS vs Temperature
Figure 5-1 IB and IOS vs Temperature
LMV321A LMV358A LMV324A Open-Loop Gain vs Temperature
Figure 5-3 Open-Loop Gain vs Temperature
LMV321A LMV358A LMV324A Open-Loop Gain vs Output Voltage
Figure 5-5 Open-Loop Gain vs Output Voltage
LMV321A LMV358A LMV324A IB and IOS vs Common-Mode Voltage
Figure 5-2 IB and IOS vs Common-Mode Voltage
LMV321A LMV358A LMV324A Open-Loop Gain and Phase vs Frequency
CL = 10 pF
Figure 5-4 Open-Loop Gain and Phase vs Frequency
LMV321A LMV358A LMV324A Closed-Loop Gain vs Frequency
CL = 10 pF
Figure 5-6 Closed-Loop Gain vs Frequency
LMV321A LMV358A LMV324A Output Voltage vs Output Current (Claw)
Figure 5-7 Output Voltage vs Output Current (Claw)
LMV321A LMV358A LMV324A DC PSRR vs Temperature
VS = 1.25 V to 5.5 V
Figure 5-9 DC PSRR vs Temperature
LMV321A LMV358A LMV324A DC CMRR vs Temperature
VCM = (V–) – 0.1 V to (V+) – 1.4 V
Figure 5-11 DC CMRR vs Temperature
LMV321A LMV358A LMV324A PSRR vs Frequency
Figure 5-8 PSRR vs Frequency
LMV321A LMV358A LMV324A CMRR vs Frequency
Figure 5-10 CMRR vs Frequency
LMV321A LMV358A LMV324A 0.1 Hz to 10 Hz Integrated Voltage Noise
Figure 5-12 0.1 Hz to 10 Hz Integrated Voltage Noise
LMV321A LMV358A LMV324A Input Voltage Noise Spectral Density
Figure 5-13 Input Voltage Noise Spectral Density
LMV321A LMV358A LMV324A THD + N vs Amplitude
VS = 5.5 V, VCM = 2.5 V, f = 1 kHz, G = 1, BW = 80 kHz
Figure 5-15 THD + N vs Amplitude
LMV321A LMV358A LMV324A Quiescent Current vs Temperature
Figure 5-17 Quiescent Current vs Temperature
LMV321A LMV358A LMV324A THD + N vs Frequency
VS = 5.5 V, VCM = 2.5 V, G = 1, BW = 80 kHz, VOUT = 0.5 VRMS
Figure 5-14 THD + N vs Frequency
LMV321A LMV358A LMV324A Quiescent Current vs Supply Voltage
Figure 5-16 Quiescent Current vs Supply Voltage
LMV321A LMV358A LMV324A Open-Loop Output Impedance vs Frequency
Figure 5-18 Open-Loop Output Impedance vs Frequency
LMV321A LMV358A LMV324A Small Signal Overshoot vs Capacitive Load
G = 1, VIN = 100 mVpp
Figure 5-19 Small Signal Overshoot vs Capacitive Load
LMV321A LMV358A LMV324A Phase Margin vs Capacitive Load
Figure 5-21 Phase Margin vs Capacitive Load
LMV321A LMV358A LMV324A Overload Recovery
G = –10, VIN = 600 mVPP
Figure 5-23 Overload Recovery
LMV321A LMV358A LMV324A Small Signal Overshoot vs Capacitive Load
G = –1, VIN = 100 mVpp
Figure 5-20 Small Signal Overshoot vs Capacitive Load
LMV321A LMV358A LMV324A No Phase Reversal
G = 1, VIN = 6.5 VPP
Figure 5-22 No Phase Reversal
LMV321A LMV358A LMV324A Small-Signal Step Response
G = 1, VIN = 100 mVPP, CL = 10 pF
Figure 5-24 Small-Signal Step Response
LMV321A LMV358A LMV324A Large-Signal Step Response
G = 1, VIN = 4 VPP, CL = 10 pF
Figure 5-25 Large-Signal Step Response
LMV321A LMV358A LMV324A Large-Signal Settling Time (Positive)
G = 1, CL = 100 pF, 2-V step
Figure 5-27 Large-Signal Settling Time (Positive)
LMV321A LMV358A LMV324A Maximum Output Voltage vs Frequency
Figure 5-29 Maximum Output Voltage vs Frequency
LMV321A LMV358A LMV324A Channel Separation
Figure 5-31 Channel Separation
LMV321A LMV358A LMV324A Large-Signal Settling Time (Negative)
G = 1, CL = 100 pF, 2-V step
Figure 5-26 Large-Signal Settling Time (Negative)
LMV321A LMV358A LMV324A Short-Circuit Current vs Temperature
Figure 5-28 Short-Circuit Current vs Temperature
LMV321A LMV358A LMV324A Electromagnetic Interference Rejection Ratio Referred to Noninverting Input (EMIRR+) vs Frequency
Figure 5-30 Electromagnetic Interference Rejection Ratio Referred to Noninverting Input (EMIRR+) vs Frequency