SBOSAD1 May   2024 INA791B

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Integrated Shunt Resistor
      2. 6.3.2 Safe Operating Area
      3. 6.3.3 Short-Circuit Duration
      4. 6.3.4 Temperature Stability
    4. 6.4 Device Functional Modes
      1. 6.4.1 Adjusting the Output With the Reference Pin
        1. 6.4.1.1 Reference Pin Connections for Unidirectional Current Measurements
        2. 6.4.1.2 Ground Referenced Output
        3. 6.4.1.3 Reference Pin Connections for Bidirectional Current Measurements
        4. 6.4.1.4 Output Set to Mid-Supply Voltage
      2. 6.4.2 Adjustable Gain Set Using External Resistors
        1. 6.4.2.1 Adjustable Unity Gain
      3. 6.4.3 Thermal Alert Function
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Calculating Total Error
        1. 7.1.1.1 Error Sources
        2. 7.1.1.2 Reference Voltage Rejection Ratio Error
        3. 7.1.1.3 External Adjustable Gain Error
        4. 7.1.1.4 Total Error Example 1
        5. 7.1.1.5 Total Error Example 2
        6. 7.1.1.6 Total Error Example 3
    2. 7.2 Typical Applications
      1. 7.2.1 High-Side, High-Drive, Solenoid Current-Sense Application
        1. 7.2.1.1 Design Requirements
  9. Power Supply Recommendations
  10. Layout Example
  11. 10Layout Guidelines
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Output Set to Mid-Supply Voltage

Figure 6-6 shows two equal resistors R1 and R2 connected between VS and the GND pins divide the supply at half, and by connecting REF pin to the divided supply, output is set to mid-supply voltage. The mid-point of these resistors is buffered using external operational amplifier to avoid loading of resistors resulting in error. The output is set to middle of the supply when there is no differential input voltage or 0A current in shunt resistor. This method creates a ratiometric offset to the supply voltage, where the output voltage remains at VS / 2 when 0A of current flows through internal shunt resistor.

INA791B Mid-Supply Voltage
                    Output Figure 6-6 Mid-Supply Voltage Output