SBOSAG0B October   2023  – August 2024 TMCS1133

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Insulation Specifications
    6. 6.6 Electrical Characteristics
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Accuracy Parameters
      1. 7.1.1 Sensitivity Error
      2. 7.1.2 Offset Error and Offset Error Drift
      3. 7.1.3 Nonlinearity Error
      4. 7.1.4 Power Supply Rejection Ratio
      5. 7.1.5 Common-Mode Rejection Ratio
      6. 7.1.6 External Magnetic Field Errors
    2. 7.2 Transient Response Parameters
      1. 7.2.1 CMTI, Common-Mode Transient Immunity
    3. 7.3 Safe Operating Area
      1. 7.3.1 Continuous DC or Sinusoidal AC Current
      2. 7.3.2 Repetitive Pulsed Current SOA
      3. 7.3.3 Single Event Current Capability
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Current Input
      2. 8.3.2 Ambient Field Rejection
      3. 8.3.3 High-Precision Signal Chain
        1. 8.3.3.1 Temperature Stability
        2. 8.3.3.2 Lifetime and Environmental Stability
      4. 8.3.4 Internal Reference Voltage
      5. 8.3.5 Current-Sensing Measurable Ranges
      6. 8.3.6 Overcurrent Detection
      7. 8.3.7 Sensor Diagnostics
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Down Behavior
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Total Error Calculation Examples
        1. 9.1.1.1 Room-Temperature Error Calculations
        2. 9.1.1.2 Full-Temperature Range Error Calculations
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Nomenclature
    2. 10.2 Device Support
      1. 10.2.1 Development Support
    3. 10.3 Documentation Support
      1. 10.3.1 Related Documentation
    4. 10.4 Receiving Notification of Documentation Updates
    5. 10.5 Support Resources
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Tape and Reel Information

Insulation Specifications

PARAMETER TEST CONDITIONS VALUE UNIT
GENERAL
CLR External clearance(1) Shortest terminal-to-terminal distance through air ≥ 8 mm
CPG External creepage(1) Shortest terminal-to-terminal distance across the package surface ≥ 8 mm
CTI Comparative tracking index DIN EN 60112; IEC 60112 ≥ 600 V
Material group According to IEC 60664-1 I
Overvoltage category per IEC 60664-1 Rated mains voltage ≤ 600VRMS I-IV
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar) 1344 VPK
VIOWM Maximum reinforced isolation working voltage AC voltage (sine wave) 600 VRMS
849 VDC
Maximum basic isolation working voltage AC voltage (sine wave) 950 VRMS
1344 VDC
VIOTM Maximum transient isolation voltage VTEST = √2 x VISO, t = 60s (qualification);
VTEST = 1.2 × VIOTM, t = 1s (100% production)
7071 VPK
VIOSM Maximum surge isolation voltage(2) Test method per IEC 62368-1, 1.2/50µs waveform,
VTEST = 1.3 × VIOSM (qualification)
10000 VPK
qpd Apparent charge(3) Method b1: At routine test (100% production) and preconditioning (type test),
Vini = 1.2 × VIOTM, tini = 1s; Vpd(m) = 1.875 × VIORM, tm = 1s
≤5 pC
CIO Barrier capacitance, input to output(4) VIO = 0.4 sin (2πft), f = 1MHz 0.6 pF
RIO Isolation resistance, input to output(4) VIO = 500V, TA = 25°C > 1012
VIO = 500V, 100°C ≤ TA ≤ 125°C > 1011
VIO = 500V at TS = 150°C > 109
Pollution degree 2
UL 1577
VISO Withstand isolation voltage VTEST = VISO, t = 60s (qualification);
VTEST = 1.2 × VISO, t = 1s (100% production)
5000 VRMS
Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Take care to maintain the creepage and clearance distance of the board design to make sure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.
Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
Apparent charge is electrical discharge caused by a partial discharge (pd).
All pins on each side of the barrier tied together creating a two-terminal device.