SBOSAJ4 June   2024 TLV9304-Q1

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information for Quad Channel
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Protection Circuitry
      2. 6.3.2 EMI Rejection
      3. 6.3.3 Phase Reversal Protection
      4. 6.3.4 Thermal Protection
      5. 6.3.5 Capacitive Load and Stability
      6. 6.3.6 Common-Mode Voltage Range
      7. 6.3.7 Electrical Overstress
      8. 6.3.8 Overload Recovery
      9. 6.3.9 Typical Specifications and Distributions
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 High Voltage Precision Comparator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curve
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 TINA-TI (Free Software Download)
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Detailed Design Procedure

This noninverting comparator circuit applies the input voltage (VIN) to the noninverting terminal of the op amp. Two resistors (R1 and R2) divide the supply voltage (V+) to create a mid-supply threshold voltage (VTH) as calculated in Equation 1. Figure 7-1 shows the circuit. When VIN is less then VTH, the output voltage transitions to the negative supply and equals the low-level output voltage. When VIN is greater than VTH, the output voltage transitions to the positive supply and equals the high-level output voltage.

In this example, resistor 1 and 2 reach 100kΩ, which sets the reference threshold at 20V. However, resistor 1 and 2 can be adjusted to modify the threshold using Equation 1. The values of resistors 1 and 2 were selected to reduce power consumption, but these values can be further increased to reduce power consumption, or reduced to improve noise performance.

Equation 1. V T H = R 2 R 1 + R 2 × V +