SBVS291C April   2017  – December 2020 TPS7A84A

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: General
    6. 6.6 Electrical Characteristics: TPS7A8400A
    7. 6.7 Electrical Characteristics: TPS7A8401A
    8. 6.8 Typical Characteristics: TPS7A8400A
    9. 6.9 Typical Characteristics: TPS7A8401A
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Voltage Regulation Features
        1. 7.3.1.1 DC Regulation
        2. 7.3.1.2 AC and Transient Response
      2. 7.3.2 System Start-Up Features
        1. 7.3.2.1 Programmable Soft Start (NR/SS)
        2. 7.3.2.2 Internal Sequencing
          1. 7.3.2.2.1 Enable (EN)
          2. 7.3.2.2.2 Undervoltage Lockout (UVLO) Control
          3. 7.3.2.2.3 Active Discharge
        3. 7.3.2.3 Power-Good Output (PG)
      3. 7.3.3 Internal Protection Features
        1. 7.3.3.1 Foldback Current Limit (ICL)
        2. 7.3.3.2 Thermal Protection (Tsd)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Regulation
      2. 7.4.2 Disabled
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 External Component Selection
        1. 8.1.1.1 Adjustable Operation
        2. 8.1.1.2 ANY-OUT Programmable Output Voltage
        3. 8.1.1.3 ANY-OUT Operation
        4. 8.1.1.4 Increasing ANY-OUT Resolution for LILO Conditions
        5. 8.1.1.5 Current Sharing
        6. 8.1.1.6 Recommended Capacitor Types
        7. 8.1.1.7 Input and Output Capacitor Requirements (CIN and COUT)
        8. 8.1.1.8 Feed-Forward Capacitor (CFF)
        9. 8.1.1.9 Noise-Reduction and Soft-Start Capacitor (CNR/SS)
      2. 8.1.2 Start-Up
        1. 8.1.2.1 Circuit Soft-Start Control (NR/SS)
          1. 8.1.2.1.1 Inrush Current
        2. 8.1.2.2 Undervoltage Lockout (UVLO)
        3. 8.1.2.3 Power-Good (PG) Function
      3. 8.1.3 AC and Transient Performance
        1. 8.1.3.1 Power-Supply Rejection Ratio (PSRR)
        2. 8.1.3.2 Output Voltage Noise
        3. 8.1.3.3 Optimizing Noise and PSRR
          1. 8.1.3.3.1 Charge Pump Noise
        4. 8.1.3.4 Load Transient Response
      4. 8.1.4 DC Performance
        1. 8.1.4.1 Output Voltage Accuracy (VOUT)
        2. 8.1.4.2 Dropout Voltage (VDO)
          1. 8.1.4.2.1 Behavior When Transitioning From Dropout Into Regulation
      5. 8.1.5 Sequencing Requirements
      6. 8.1.6 Negatively Biased Output
      7. 8.1.7 Reverse Current Protection
      8. 8.1.8 Power Dissipation (PD)
        1. 8.1.8.1 Estimating Junction Temperature
        2. 8.1.8.2 Recommended Area for Continuous Operation (RACO)
    2. 8.2 Typical Applications
      1. 8.2.1 Low-Input, Low-Output (LILO) Voltage Conditions
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Evaluation Models
        2. 11.1.1.2 Spice Models
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary

Power-Good (PG) Function

The PG circuit monitors the voltage at the feedback pin to indicate the status of the output voltage. The PG circuit asserts whenever FB, VIN, or EN are below their thresholds. The PG operation versus the output voltage is shown in Figure 8-5, which is described by Table 8-8.

GUID-95090CA1-872F-4058-92BC-E135B84C1272-low.gifFigure 8-5 Typical PG Operation
Table 8-8 Typical PG Operation Description
REGIONEVENTPG STATUSFB VOLTAGE
ATurnon0VFB < VIT(PG) + VHYS(PG)
BRegulationHi-ZVFB ≥ VIT(PG)
COutput voltage dipHi-Z
DRegulationHi-Z
EOutput voltage dip0VFB < VIT(PG)
FRegulationHi-ZVFB ≥ VIT(PG)
GTurnoff0VFB < VIT(PG)

The PG pin is open-drain, and connecting a pullup resistor to an external supply enables others devices to receive Power Good as a logic signal that can be used for sequencing. Make sure that the external pullup supply voltage results in a valid logic signal for the receiving device or devices.

To ensure proper operation of the PG circuit, the pullup resistor value must be from 10 kΩ and 100 kΩ. The lower limit of 10 kΩ results from the maximum pulldown strength of the PG transistor, and the upper limit of 100 kΩ results from the maximum leakage current at the PG node. If the pullup resistor is outside of this range, then the PG signal may not read a valid digital logic level.

Using a large CFF with a small CNR/SS causes the PG signal to incorrectly indicate that the output voltage has settled during turnon. The CFF time constant must be greater than the soft-start time constant to ensure proper operation of the PG during start-up. For a detailed description, see Pros and Cons of Using a Feed-Forward Capacitor with a Low Dropout Regulator.

The state of PG is only valid when the device operates above the minimum supply voltage. During short brownout events and at light loads, PG does not assert because the output voltage (therefore VFB) is sustained by the output capacitance.