SBVS343A March   2019  – September 2019 TPS7A78

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Schematic Half-Bridge Configuration
      2.      Typical Schematic Full-Bridge Configuration
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Active Bridge Control
      2. 7.3.2 Full-Bridge (FB) and Half-Bridge (HB) Configurations
      3. 7.3.3 4:1 Switched-Capacitor Voltage Reduction
      4. 7.3.4 Undervoltage Lockout Circuits (VUVLO_SCIN) and (VUVLO_LDO_IN)
      5. 7.3.5 Dropout Voltage Regulation
      6. 7.3.6 Current Limit
      7. 7.3.7 Programmable Power-Fail Detection
      8. 7.3.8 Power-Good (PG) Detection
      9. 7.3.9 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Normal Operation
      2. 7.4.2 Dropout Mode
      3. 7.4.3 Disabled Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Recommended Capacitor Types
      2. 8.1.2 Input and Output Capacitors Requirements
      3. 8.1.3 Startup Behavior
      4. 8.1.4 Load Transient
      5. 8.1.5 Standby Power and Output Efficiency
      6. 8.1.6 Reverse Current
      7. 8.1.7 Switched-Capacitor Stage Output Impedance
      8. 8.1.8 Power Dissipation (PD)
      9. 8.1.9 Estimating Junction Temperature
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Calculating the Cap-Drop Capacitor CS
          1. 8.2.2.1.1 CS Calculations for the Typical Design
        2. 8.2.2.2 Calculating the Surge Resistor RS
          1. 8.2.2.2.1 RS Calculations for the Typical Design
        3. 8.2.2.3 Checking for the Device Maximum ISHUNT Current
          1. 8.2.2.3.1 ISHUNT Calculations for the Typical Design
        4. 8.2.2.4 Calculating the Bulk Capacitor CSCIN
          1. 8.2.2.4.1 CSCIN Calculations for the Typical Design
        5. 8.2.2.5 Calculating the PFD Pin Resistor Dividers for a Power-Fail Detection
          1. 8.2.2.5.1 PFD Pin Resistor Divider Calculations for the Typical Design
        6. 8.2.2.6 Summary of the Typical Application Design Components
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Evaluation Module
        2. 11.1.1.2 SIMPLIS Model
      2. 11.1.2 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Full-Bridge (FB) and Half-Bridge (HB) Configurations

The TPS7A78 can be configured to operate either in full-bridge (FB) or half-bridge (HB) configurations. HB configuration ties the AC input pin without the series CS and RS components to the device GND pins. See Figure 14 and Figure 15 for the HB and FB configurations.

TPS7A78 TPS7A78-typical-schematic-HB.gifFigure 14. Typical Schematic Half-Bridge Configuration
TPS7A78 TPS7A78-typical-schematic-FB.gifFigure 15. Typical Schematic Full-Bridge Configuration

NOTE

When FB configuration is used, do not tie the device GNDs to earth GND neither schematically nor accidentally via an earth-grounded oscilloscope or measurement equipment because the device GNDs and earth GND are at different voltage potentials. Doing so and can cause damage to the device and external equipment. Tying the device GND pins to earth GND when FB configuration is used is only acceptable if a second surge resistor RS is used on the AC input pin side without the series CS and first RS, as illustrated in Figure 16 with floating device GND pins and Figure 17 with non-floating (earth grounded) device GND pins.

TPS7A78 TPS7A78-FB_Floating.gifFigure 16. Full-Bridge Floating Device GND
TPS7A78 TPS7A78-FB_Non_Floating.gifFigure 17. Full-Bridge Non-Floating Device GND