SCDS394B march   2021  – june 2023 TMUX7462F

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Thermal Information
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Electrical Characteristics (Global)
    6. 6.6  ±15 V Dual Supply: Electrical Characteristics
    7. 6.7  ±20 V Dual Supply: Electrical Characteristics
    8. 6.8  12 V Single Supply: Electrical Characteristics
    9. 6.9  36 V Single Supply: Electrical Characteristics
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1  On-Resistance
    2. 7.2  On-Leakage Current
    3. 7.3  Input and Output Leakage Current under Overvoltage Fault
    4. 7.4  Fault Response Time
    5. 7.5  Fault Recovery Time
    6. 7.6  Fault Flag Response Time
    7. 7.7  Fault Flag Recovery Time
    8. 7.8  Fault Drain Enable Time
    9. 7.9  Inter-Channel Crosstalk
    10. 7.10 Bandwidth
    11. 7.11 THD + Noise
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Flat ON-Resistance
      2. 8.3.2 Protection Features
        1. 8.3.2.1 Input Voltage Tolerance
        2. 8.3.2.2 Powered-Off Protection
        3. 8.3.2.3 Fail-Safe Logic
        4. 8.3.2.4 Overvoltage Protection and Detection
        5. 8.3.2.5 Latch-Up Immunity
        6. 8.3.2.6 EMC Protection
      3. 8.3.3 Overvoltage Fault Flags
      4. 8.3.4 Bidirectional Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Mode
      2. 8.4.2 Fault Mode
      3. 8.4.3 Truth Table
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Description

The TMUX7462F is a four-channel protector that can be placed on the front end of a signal path to protect sensitive components downstream from damage caused by overvoltage faults. Each of the 4 channels has an internal switch that is turned-off automatically upon occurrence of an overvoltage fault without the need of external controls. This simplifies robust system level protection designs by removing the need for control signals for each channel of the device. The overvoltage protection is available in powered and powered-off conditions, making the TMUX7462F suitable for applications where power supply sequencing cannot be precisely controlled.

The switch channels remain in the high impedance state (regardless of switch input conditions) when the devices power supplies are floating, grounded, or at a level that is below the undervoltage (UV) threshold. If the signal level on any Sx pin exceeds the fault supply (VFP or VFN) by a threshold voltage (VT), then the Sx pin becomes high impedance and an output fault flag is asserted low to indicate a fault condition under normal operation. The drain pin (Dx) is either pulled to the fault supply voltage that was exceeded or left floating depending on the DR control logic.

The device operates with dual supplies (±5 V to ±22 V), a single supply (8 V to 44 V), or asymmetric supplies. The low and flat on-resistance of the device makes the TMUX7462F an excellent solution for data acquisition applications where excellent linearity and low distortion is critical.

Package Information
PART NUMBERPACKAGE(1)PACKAGE SIZE(2)
TMUX7462FPW (TSSOP, 16)5 mm × 6.4 mm
RRP (WQFN, 16)4 mm × 4 mm
See the orderable addendum at the end of the data sheet for all available packages.
The package size (length × width) is a nominal value and includes pins, where applicable.