SCDS437B January   2021  – July 2024 TMUX6219-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Thermal Information
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Source or Drain Continuous Current
    6. 5.6  ±15 V Dual Supply: Electrical Characteristics 
    7. 5.7  ±15 V Dual Supply: Switching Characteristics 
    8. 5.8  36 V Single Supply: Electrical Characteristics 
    9. 5.9  36 V Single Supply: Switching Characteristics 
    10. 5.10 12 V Single Supply: Electrical Characteristics 
    11. 5.11 12 V Single Supply: Switching Characteristics 
    12. 5.12 ±5 V Dual Supply: Electrical Characteristics 
    13. 5.13 ±5 V Dual Supply: Switching Characteristics 
    14. 5.14 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1  On-Resistance
    2. 6.2  Off-Leakage Current
    3. 6.3  On-Leakage Current
    4. 6.4  Transition Time
    5. 6.5  tON(EN) and tOFF(EN)
    6. 6.6  Break-Before-Make
    7. 6.7  tON (VDD) Time
    8. 6.8  Propagation Delay
    9. 6.9  Charge Injection
    10. 6.10 Off Isolation
    11. 6.11 Crosstalk
    12. 6.12 Bandwidth
    13. 6.13 THD + Noise
    14. 6.14 Power Supply Rejection Ratio (PSRR)
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Bidirectional Operation
      2. 7.3.2 Rail to Rail Operation
      3. 7.3.3 1.8V Logic Compatible Inputs
      4. 7.3.4 Fail-Safe Logic
      5. 7.3.5 Latch-Up Immune
      6. 7.3.6 Ultra-Low Charge Injection
    4. 7.4 Device Functional Modes
    5. 7.5 Truth Tables
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 PWM Signal Generation (EV Charging Station)
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Pin Configuration and Functions

TMUX6219-Q1 DGK Package,8-Pin VSSOP(Top
                        View)Figure 4-1 DGK Package,
8-Pin VSSOP
(Top View)
TMUX6219-Q1 RQX Package,8-Pin WSON(Top
                        View)Figure 4-2 RQX Package,
8-Pin WSON
(Top View)
Table 4-1 Pin Functions
PIN TYPE(1) DESCRIPTION(2)
NAME DGK RQX
D 1 1 I/O Drain pin. Can be an input or output.
S1 2 2 I/O Source pin 1. Can be an input or output.
GND 3 3 P Ground (0V) reference
VDD 4 4 P Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1µF to 10µF between VDD and GND.
EN 5 5 I Active high logic enable, has internal pull-up resistor. When this pin is low, all switches are turned off. When this pin is high, the SEL logic input determine which switch is turned on.
SEL 6 6 I Logic control input, has internal pull-down resistor. Controls the switch connection as shown in Section 7.5.
VSS 7 7 P Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1µF to 10µF between VSS and GND.
S2 8 8 I/O Source pin 2. Can be an input or output.
Thermal Pad The thermal pad is not connected internally. It is recommended that the pad be tied to GND or VSS for best performance.
I = input, O = output, I/O = input and output, P = power.
Refer to Section 7.4 for what to do with unused pins.