SCES226K April   1999  – September 2024 SN74LV4040A

PRODMIX  

  1.   1
  2. Features
  3. Description
  4. Pin Configuration and Functions
  5. Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  ESD Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Thermal Information
    5. 4.5  Electrical Characteristics
    6. 4.6  Timing Requirements, VCC = 2.5 V ± 0.2 V
    7. 4.7  Timing Requirements, VCC = 3.3 V ± 0.3 V
    8. 4.8  Timing Requirements, VCC = 5 V ± 0.5 V
    9. 4.9  Switching Characteristics, VCC = 2.5 V ± 0.2 V
    10. 4.10 Switching Characteristics, VCC = 3.3 V ± 0.3 V
    11. 4.11 Switching Characteristics, VCC = 5 V ± 0.5 V
    12. 4.12 Noise Characteristics
    13. 4.13 Operating Characteristics
  6. Parameter Measurement Information
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Power Supply Recommendations
    2. 7.2 Layout
      1. 7.2.1 Layout Guidelines
  9. Device and Documentation Support
    1. 8.1 Documentation Support (Analog)
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Recommended Operating Conditions table.

Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μF is recommended. If there are multiple VCC pins, 0.01 μF or 0.022 μF is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μF and
1 μF are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.