SCES962 June   2024 TXS0102V

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Switching Characteristics, VCCA = 1.8 ± 0.15V
    7. 5.7  Switching Characteristics, VCCA = 2.5 ± 0.2V
    8. 5.8  Switching Characteristics, VCCA = 3.3 ± 0.3V
    9. 5.9  Switching Characteristics: Tsk, TMAX
    10. 5.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Architecture
      2. 7.3.2 Input Driver Requirements
      3. 7.3.3 Output Load Considerations
      4. 7.3.4 Enable and Disable
      5. 7.3.5 Pullup or Pulldown Resistors on I/O Lines
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Power Supply Recommendations

During operation, ensure that VCCA  ≤ VCCB at all times. The sequencing of each power supply will not damage the device during the power up operation, so either power supply can be ramped up first. The output-enable (OE) input circuit is designed so that it is supplied by VCCA and when the (OE) input is low, all outputs are placed in the high-impedance state.

To put the outputs in the high-impedance state during power up or power down, the OE input pin must be tied to GND through a pulldown resistor and must not be enabled until VCCA and VCCB are fully ramped and stable. The current-sourcing capability of the driver determines the minimum value of the pulldown resistor to ground.