SCLS925B May   2023  – April 2024 SN74LV1T04-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Switching Characteristics - 1.8V VCC
    7. 5.7  Switching Characteristics - 2.5V VCC
    8. 5.8  Switching Characteristics - 3.3V VCC
    9. 5.9  Switching Characteristics - 5.0V VCC
    10. 5.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Balanced CMOS 3-State Outputs
      2. 7.3.2 Clamp Diode Structure
      3. 7.3.3 LVxT Enhanced Input Voltage
        1. 7.3.3.1 Down Translation
        2. 7.3.3.2 Up Translation
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Power Considerations
        2. 8.2.1.2 Input Considerations
        3. 8.2.1.3 Output Considerations
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Up Translation

Input signals can be up translated using the SN74LV1T04-Q1. The voltage applied at VCC will determine the output voltage and the input thresholds as described in the Recommended Operating Conditions and Electrical Characteristics tables. When connected to a high-impedance input, the output voltage will be approximately VCC in the HIGH state, and 0V in the LOW state.

The inputs have reduced thresholds that allow for input HIGH state levels which are much lower than standard values. For example, standard CMOS inputs for a device operating at a 5V supply will have a VIH(MIN) of 3.5V. For the SN74LV1T04-Q1, VIH(MIN) with a 5V supply is only 2V, which would allow for up-translation from a typical 2.5V to 5V signals.

As shown in Figure 7-3, ensure that the input signals in the HIGH state are above VIH(MIN) and input signals in the LOW state are lower than VIL(MAX).

Up Translation Combinations are as follows:

  • 1.8V VCC – Inputs from 1.2V
  • 2.5V VCC – Inputs from 1.8V
  • 3.3V VCC – Inputs from 1.8V and 2.5V
  • 5.0V VCC – Inputs from 2.5V and 3.3V

GUID-79218250-73F2-481D-9DF1-825AC9B58913-low.gifFigure 7-3 LVxT Up and Down Translation Example