SCLSA21A September   2024  – October 2024 SN74LV8T244-EP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
  9. Feature Description
    1. 8.1 Balanced CMOS 3-State Outputs
    2. 8.2 LVxT Enhanced Input Voltage
    3. 8.3 Clamp Diode Structure
  10. Device Functional Modes
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
        1. 10.2.1.1 Power Considerations
        2. 10.2.1.2 Input Considerations
        3. 10.2.1.3 Output Considerations
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information
    2. 13.2 Mechanical Data

Overview

The SN74LV8T244-EP contains 8 individual high speed CMOS buffers with 3-state outputs.

Each buffer performs the boolean logic function xYn = xAn, with x being the bank number and n being the channel number.

Each output enable (xOE) controls four buffers. When the xOE pin is in the low state, the outputs of all buffers in the bank x are enabled. When the xOE pin is in the high state, the outputs of all buffers in the bank x are disabled. All disabled output are placed into the high-impedance state.

To put the device in the high-impedance state during power up or power down, tie both OE pins to VCC through a pull-up resistor; the current sinking capability of the driver determines the minimum value of the resistor, and the leakage of the pin as defined in the Electrical Characteristics table.