SFFS624 March   2024 MSPM0G3105 , MSPM0G3105-Q1 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3505-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1

 

  1.   1
  2. 1Introduction
    1.     Trademarks
  3. 2 MSPM0G Hardware Component Functional Safety Capability
  4. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  5. 4 MSPM0G Component Overview
    1. 4.1 Targeted Applications
    2. 4.2 Hardware Component Functional Safety Concept
    3. 4.3 Functional Safety Constraints and Assumptions
  6. 5Description of Hardware Component Parts
    1. 5.1  ADC
    2. 5.2  Comparator
    3. 5.3  DAC
    4. 5.4  OPA
    5. 5.5  CPU
    6. 5.6  RAM
    7. 5.7  FLASH
    8. 5.8  GPIO
    9. 5.9  DMA
    10. 5.10 SPI
    11. 5.11 I2C
    12. 5.12 UART
    13. 5.13 Timers (TIMx)
    14. 5.14 Power Management Unit (PMU)
    15. 5.15 Clock Module (CKM)
    16. 5.16 CAN-FD
  7. 6 MSPM0G Management of Random Faults
    1. 6.1 Fault Reporting
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1  ADC1,COMP1,DAC1,DMA1,GPIO2,TIM2,I2C2,IOMUX1,OA1,SPI2,UART2,SYSCTL5,MCAN2: Periodic read of static configuration registers
      2. 6.3.2  ADC2: Software test of function
      3. 6.3.3  ADC3: ADC trigger overflow check
      4. 6.3.4  ADC4: Window comparator
      5. 6.3.5  OA2: Test of OA using internal DAC as a driver
      6. 6.3.6  COMP2: Software test of Comparator using internal DAC
      7. 6.3.7  WDT: Windowed watch dog timer
      8. 6.3.8  CPU1: CPU test using software test library
      9. 6.3.9  CPU2: Software test of CPU data busses
      10. 6.3.10 SYSMEM4: Parity protection on SRAM
      11. 6.3.11 FLASH1: Flash Single Error Correction, Double Error Detection mechanism
      12. 6.3.12 DAC2: DAC test using internal ADC as DAC output checker
      13. 6.3.13 DAC3: DAC FIFO underrun interrupt
      14. 6.3.14 DMA2: Software test of DMA function
      15. 6.3.15 GPIO1: GPIO test using pin IO loopback
      16. 6.3.16 TIM1: Test for PWM generation
      17. 6.3.17 I2C1: Software test of I2C function using internal loopback mechanism
      18. 6.3.18 SPI1 : Software test of SPI function
      19. 6.3.19 SPI3: SPI periodic safety message exchange
      20. 6.3.20 UART1: Software test of UART function
      21. 6.3.21 SYSCTL1: MCLK monitor
      22. 6.3.22 SYSCTL2: HFCLK startup monitor
      23. 6.3.23 SYSCTL3: LFCLK monitor
      24. 6.3.24 SYSCTL4: RTC monitor
      25. 6.3.25 SYSCTL6: SYSPLL startup monitor
      26. 6.3.26 SYSCTL8: Brownout Reset (BOR) Supervisor
      27. 6.3.27 SYSCTL9: FCC counter logic to calculate clock frequencies
      28. 6.3.28 SYSCTL10: External voltage monitor
      29. 6.3.29 SYSCTL11: Boot process monitor
      30. 6.3.30 SYSCTL12: TRIM bits parity protection
      31. 6.3.31 SYSCTL14: Brownout Voltage Monitor
      32. 6.3.32 SYSCTL15: External voltage monitor
      33. 6.3.33 MCAN1: Software test of function using I/O Loopback
      34. 6.3.34 MCAN4: SRAM ECC
      35. 6.3.35 MCAN5: Software test of ECC check logic
      36. 6.3.36 MCAN6: MCAN timeout function
      37. 6.3.37 MCAN7: MCAN timestamp function
  8. 7An In-Context Look at This Safety Element out of Context
    1. 7.1 System Functional Safety Concept Examples
  9.   A Summary of Recommended Functional Safety Mechanism Usage (Optional)
  10.   B Distributed Developments
    1.     B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
    2.     B.2 Activities Performed by Texas Instruments
    3.     B.3 Information Provided

TI Functional Safety Development Process

The TI functional safety development flow derives from ISO 26262 and IEC 61508 a set of requirements and methodologies to be applied to semiconductor development. This flow is combined with TI's standard new product development process to develop TI functional safety components. The details of this functional safety development flow are described in the TI internal specification - TI Functional Safety Hardware.

Key elements of the TI functional safety-development flow are as follows:

  • Assumptions on system level design, functional safety concept, and requirements based on TI's experience with components in functional safety applications
  • Qualitative and quantitative functional safety analysis techniques including analysis of silicon failure modes and application of functional safety mechanisms
  • Base FIT rate estimation based on multiple industry standards and TI manufacturing data
  • Documentation of functional safety work products during the component development
  • Integration of lessons learned through multiple functional safety component developments, functional safety standard working groups, and the expertise of TI customers

Functional Safety Activities Overlaid on top of TI's Standard Development Process lists these functional safety development activities which are overlaid atop the standard development flow in Figure 3-1.

Refer to Appendix B for more information about which functional safety lifecycle activities TI performs.

The customer facing work products derived from this TI functional safety process are applicable to many other functional safety standards beyond ISO 26262 and IEC 61508.

Table 3-1 Functional Safety Activities Overlaid on top of TI's Standard Development Process
Assess Plan Create Validate Sustain and End-of-Life
Determine if functional safety process execution is required Define component target SIL/ASIL capability Develop component level functional safety requirements Validate functional safety design in silicon Document any reported issues (as needed)
Nominate a functional safety manager Generate functional safety plan Include functional safety requirements in design specification Characterize the functional safety design Perform incident reporting of sustaining operations (as needed)
End of Phase Audit Verify the functional safety plan Verify the design specification Qualify the functional safety design (per AEC-Q100) Update work products (as needed)
Initiate functional safety case Start functional safety design Finalize functional safety case
Analyze target applications to generate system level functional safety assumptions Perform qualitative analysis of design (i.e. failure mode analysis) Perform assessment of project
End of Phase Audit Verify the qualitative analysis Release functional safety manual
Verify the functional safety design Release functional safety analysis report
Perform quantitative analysis of design (i.e. FMEDA) Release functional safety report
Verify the quantitative analysis End of Phase Audit
Iterate functional safety design as necessary
End of Phase Audit