SFFS624A March   2024  – December 2024 MSPM0G3105 , MSPM0G3105-Q1 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3505-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1

 

  1.   1
  2. 1Introduction
    1.     Trademarks
  3. 2 MSPM0G Hardware Component Functional Safety Capability
  4. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
  5. 4 MSPM0G Component Overview
    1. 4.1 Targeted Applications
    2. 4.2 Hardware Component Functional Safety Concept
    3. 4.3 Functional Safety Constraints and Assumptions
  6. 5Description of Hardware Component Parts
    1. 5.1  ADC
    2. 5.2  Comparator
    3. 5.3  DAC
    4. 5.4  OPA
    5. 5.5  CPU
    6. 5.6  RAM
    7. 5.7  FLASH
    8. 5.8  GPIO
    9. 5.9  DMA
    10. 5.10 SPI
    11. 5.11 I2C
    12. 5.12 UART
    13. 5.13 Timers (TIMx)
    14. 5.14 Power Management Unit (PMU)
    15. 5.15 Clock Module (CKM)
    16. 5.16 CAN-FD
    17. 5.17 Events
    18. 5.18 IOMUX
    19. 5.19 VREF
    20. 5.20 WWDT
    21. 5.21 CRC
  7. 6 MSPM0G Management of Random Faults
    1. 6.1 Fault Reporting
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1  ADC1, COMP1, DAC1, DMA1, GPIO2, TIM2, I2C2, IOMUX1, OA1, SPI2, UART2, SYSCTL5, MCAN3, CPU4, CRC1, EVENT1, REF1, WDT1: Periodic Read of Static Configuration Registers
      2. 6.3.2  ADC2: Software Test of Functionality
      3. 6.3.3  ADC3: ADC Trigger Overflow Check
      4. 6.3.4  ADC4: Window Comparator
      5. 6.3.5  ADC5: Test of Window Comparator
      6. 6.3.6  ADC6: ADC Plausibility Checks
      7. 6.3.7  OA2: Test of OA Using Internal DAC as a Driver
      8. 6.3.8  OA3: ADC Monitoring of OA Output
      9. 6.3.9  COMP2: Software Test of Comparator Using Internal DAC
      10. 6.3.10 COMP3: External Pin Input to COMP
      11. 6.3.11 COMP4: Comparator Hysteresis
      12. 6.3.12 COMP5: Redundant Comparator
      13. 6.3.13 WDT: Windowed Watchdog Timer
      14. 6.3.14 WDT2: WWDT Counter Check
      15. 6.3.15 WDT3: WWDT Software Test
      16. 6.3.16 REF2: VREF to ADC Reference Input
      17. 6.3.17 CPU1: CPU Test Using Software Test Library
      18. 6.3.18 CPU2: Software Test of CPU Data Buses
      19. 6.3.19 CPU3: Software Redundancy
      20. 6.3.20 SYSMEM1: Software Read of Memory, DMA Write
      21. 6.3.21 SYSMEM2: DMA Read from SRAM, CPU Write
      22. 6.3.22 SYSMEM3: Parity Logic Test
      23. 6.3.23 SYSMEM4: Parity Protection on SRAM
      24. 6.3.24 FLASH1: FLASH Single Error Correction, Double Error Detection Mechanism
      25. 6.3.25 FXBAR2: Periodic Software Readback of FLASH data
      26. 6.3.26 FXBAR3: Software Test of ECC Checker Logic
      27. 6.3.27 FXBAR4: Write Protection of FLASH
      28. 6.3.28 DAC2: DAC Test Using Internal ADC as DAC Output Checker
      29. 6.3.29 DAC3: DAC FIFO Underrun Interrupt
      30. 6.3.30 DMA2: Software Test of DMA Function
      31. 6.3.31 DMA3: Software DMA Channel Test
      32. 6.3.32 DMA4: CRC Check of the Transferred Data
      33. 6.3.33 GPIO1: GPIO Test Using Pin I/O Loopback
      34. 6.3.34 GPIO3: GPIO Multiple (Redundant) Outputs
      35. 6.3.35 TIM1: Test for PWM Generation
      36. 6.3.36 TIM3: Test for Fault Generation
      37. 6.3.37 TIM4: Fault Detection to Take the PWMs to Safe State
      38. 6.3.38 TIM5: Input Capture on Two or More Timer Instances
      39. 6.3.39 TIM6: Timer Period Monitoring
      40. 6.3.40 I2C1: Software Test of I2C Function Using Internal Loopback Mechanism
      41. 6.3.41 I2C3, SPI4, UART3, MCAN2: Information Redundancy Techniques Including End-to-End Safing
      42. 6.3.42 I2C4, SPI5, UART4: Transmission Redundancy
      43. 6.3.43 I2C5, UART5: Timeout Monitoring
      44. 6.3.44 I2C6: Test of CRC function
      45. 6.3.45 I2C7: Packet Error check in SMBUS Mode
      46. 6.3.46 IOMUX2: IOMUX Coverage as Part of Other IP Safety Mechanisms
      47. 6.3.47 SPI1: Software Test of SPI Function
      48. 6.3.48 SPI3: SPI Periodic Safety Message Exchange
      49. 6.3.49 UART1: Software Test of UART Function
      50. 6.3.50 UART6: UART Error Flags
      51. 6.3.51 SYSCTL1: MCLK Monitor
      52. 6.3.52 SYSCTL2: HFCLK Start-Up Monitor
      53. 6.3.53 SYSCTL3: LFCLK Monitor
      54. 6.3.54 SYSCTL6: SYSPLL Start-Up Monitor
      55. 6.3.55 SYSCTL8: Brownout Reset (BOR) Supervisor
      56. 6.3.56 SYSCTL9: FCC Counter Logic to Calculate Clock Frequencies
      57. 6.3.57 SYSCTL10: External Voltage Monitor
      58. 6.3.58 SYSCTL11: Boot Process Monitor
      59. 6.3.59 SYSCTL14: Brownout Voltage Monitor
      60. 6.3.60 SYSCTL15: External Voltage Monitor
      61. 6.3.61 SYSCTL16: External Watchdog Timer
      62. 6.3.62 MCAN1: Software test of function using I/O Loopback
      63. 6.3.63 MCAN4: SRAM ECC
      64. 6.3.64 MCAN5: Software Test of ECC Check Logic
      65. 6.3.65 MCAN6: MCAN Timeout Function
      66. 6.3.66 MCAN7: MCAN Timestamp Function
      67. 6.3.67 CRC: CRC Checker
      68. 6.3.68 EVENT2: Interrupt Connectivity Check
  8. 7An In-Context Look at This Safety Element out of Context
    1. 7.1 System Functional Safety Concept Examples
  9.   A Summary of Recommended Functional Safety Mechanism Usage
  10.   B Revision History

SYSCTL6: SYSPLL Start-Up Monitor

The SYSPLL takes time to start and settle after being enabled. A start-up monitor is provided to indicate to the application software if the SYSPLL has successfully started, at which point the clock outputs from the SYSPLL can be selected to source a variety of system functions.

When the SYSPLL is started, the SYSPLLGOOD and SYSPLLOFF bits in the CLKSTATUS register in SYSCTL are cleared. After the start-up and settling time has expired, the SYSPLL status is tested. If the SYSPLL started successfully, the SYSPLL start-up monitor asserts the SYSPLLGOOD bit in the CLKSTATUS register and the SYSPLLGOOD interrupt is also asserted. If the SYSPLL did not start within the specified time, the SYSPLLOFF bit is set, indicating that the SYSPLL was dead at start-up.