SLAA202B February   2005  – December 2018 MSP430F149 , MSP430F149 , MSP430F2252-Q1 , MSP430F2252-Q1 , MSP430F2272-Q1 , MSP430F2272-Q1 , MSP430F2274 , MSP430F2274 , MSP430FG4619 , MSP430FG4619

 

  1.   Implementing IrDA With MSP430™ MCUs
    1.     Trademarks
    2. 1 Introduction
    3. 2 Hardware Description
      1. 2.1 Hardware Overview
      2. 2.2 Circuit Description
    4. 3 Software Description
      1. 3.1 Implementing IrPHY Layer Using Timer_A
        1. 3.1.1 Transmission
        2. 3.1.2 Reception
      2. 3.2 Implementing IrPHY Layer using USCI_A0
      3. 3.3 Implementing IrLAP
        1. 3.3.1 Discovery Services
        2. 3.3.2 Connect Services
        3. 3.3.3 Data Services
        4. 3.3.4 Disconnect Services
      4. 3.4 Implementing IrLMP
        1. 3.4.1 Discovery Services
        2. 3.4.2 Link Connect and Connect Services
        3. 3.4.3 Data Services
        4. 3.4.4 Disconnect Services
      5. 3.5 IAS Implementation
      6. 3.6 TTP Implementation
      7. 3.7 IrCOMM Implementation
      8. 3.8 Application Layer
    5. 4 PC Demonstration Application
    6. 5 IrDA Protocol Basics
      1. 5.1 Physical (IrPHY) Layer
      2. 5.2 Link Access Protocol (IrLAP) Layer
      3. 5.3 Link Management Protocol (IrLMP) Layer
      4. 5.4 Information Access Services (IAS)
      5. 5.5 Tiny Transfer Protocol (TTP)
      6. 5.6 IrCOMM
    7. 6 IrDA Communication Diagram
    8. 7 Frame Exchange Log
    9. 8 References
  2.   Revision History

Software Description

This section provides a description of the implemented IrDA protocol stack. The entire demonstration application is written in assembly language and resides in one file. Functions have been named in ways which make it simple to understand which layer they belong to and what their functionality is. All service primitives for the IrPHY, IrLAP, and IrLMP layers have been implemented as specified by the IrDA Lite documentation. The TTP and IrCOMM 3-wire cooked services have been implemented to provide a demonstration of the working stack.

This chapter discusses two different implementation methods of the IrPHY layer. The first method uses Timer_A, and is utilized by the MSP430F149-based design discussed in this application report. The second method uses the USCI_A0 hardware communication module, and is used by both MSP430FG4619- and MSP430F2274-based designs. However all designs use the exact same IrDA communication algorithms.