SLAA517F May 2012 – August 2021 MSP430F6720A , MSP430F6720A , MSP430F6721A , MSP430F6721A , MSP430F6723A , MSP430F6723A , MSP430F6724A , MSP430F6724A , MSP430F6725A , MSP430F6725A , MSP430F6726A , MSP430F6726A , MSP430F6730A , MSP430F6730A , MSP430F6731A , MSP430F6731A , MSP430F6733A , MSP430F6733A , MSP430F6734A , MSP430F6734A , MSP430F6735A , MSP430F6735A , MSP430F6736 , MSP430F6736 , MSP430F6736A , MSP430F6736A
The background process uses the ΣΔ interrupt as a trigger to collect voltage and current samples (three values in total). These samples are further processed and accumulated in dedicated 48-bit registers. The background function deals mainly with timing critical events in software. Once sufficient samples (1 second worth) have been accumulated then the foreground function is triggered to calculate the final values of VRMS, IRMS, power and energy. The background process is also wholly responsible for energy proportional pulses, frequency and power factor calculation for each phase. Figure 4-2 shows the flow diagram of the background process.
The following sections discuss the various elements of electricity measurement in the background process.