SLAA843A August   2018  – March 2019 MSP430FR2512 , MSP430FR2512 , MSP430FR2522 , MSP430FR2522 , MSP430FR2532 , MSP430FR2532 , MSP430FR2533 , MSP430FR2533 , MSP430FR2632 , MSP430FR2632 , MSP430FR2633 , MSP430FR2633

 

  1.   Sensitivity, SNR, and design margin in capacitive touch applications
    1.     Trademarks
    2. 1 Overview
      1. 1.1 Design Objectives
        1. 1.1.1 Reliability
        2. 1.1.2 Robustness
      2. 1.2 The Designer's Dilemma
    3. 2 Recommended Actions for Developers
      1. 2.1 Run SNR and Design Margin Tests
    4. 3 Terminology
      1. 3.1 Signal (S)
      2. 3.2 Noise (N)
      3. 3.3 Threshold (Sensitivity) (Th)
      4. 3.4 Design Margin
        1. 3.4.1 False Detection Margin (Min)
        2. 3.4.2 Detection Margin (Mout)
      5. 3.5 Signal-to-Noise Ratio (SNR)
      6. 3.6 Advice
    5. 4 CapTIvate Device Performance
      1. 4.1 Minimum Recommended Values
      2. 4.2 CapTIvate Device SNR
    6. 5 Interpreting the Results
      1. 5.1 Interpreting the Advice
      2. 5.2 Check Other Results
    7. 6 Application of Terms
      1. 6.1 Count and Percent Change Analysis With 7.5-mm Overlay, Advice = POOR
      2. 6.2 Count and Percent Change Analysis With 1.5-mm Overlay, Advice = GOOD
      3. 6.3 Count and Percent Change Analysis (1.5-mm Overlay vs 7.5-mm Overlay)
      4. 6.4 Effect of Post-Processing and Sampling Rate
    8. 7 Summary
  2.   Revision History

Effect of Post-Processing and Sampling Rate

It is important to note that measured noise 'N' is affected by filtering of the count value, the tracking rate of the LTA, and the overall sampling rate. In the previous examples, a count filter beta of 1, LTA filter beta of 7, and scan rate of 30 samples per second (sps) was used. In general, a low noise level (and thus better SNR) is achieved by increasing the count filter beta. Increasing the count filter beta can add some phase lag to the count signal. Thus, when increasing the count filter beta it is best to increase the sampling rate along with the count filter beta to maintain the desired response time to a touch.