SLAA996A June   2021  – June 2021 TPA6304-Q1

 

  1.   Trademarks
  2. 1Introduction
  3. 2Understanding the Thermal Flow
  4. 3Understanding the Test and System Conditions
    1. 3.1 Device Efficiency
    2. 3.2 Test Signals
      1. 3.2.1 Sinusoidal Signal
      2. 3.2.2 Pink Noise
      3. 3.2.3 Music File
    3. 3.3 Ambient Temperature
    4. 3.4 Junction Temperature
    5. 3.5 Thermal Interface Material and Heatsink
  5. 4Calculating Dynamic Thermal Dissipation
  6. 5Designing a Realistic Thermal Test
  7. 6Thermal Tests
    1. 6.1 Test Setup
    2. 6.2 5W 1kHz Sine Wave Test
      1. 6.2.1 Calculations
      2. 6.2.2 Dynamic Calculation Results
      3. 6.2.3 Tested Results
      4. 6.2.4 Summary of Results
    3. 6.3 10W 1kHz Sine Wave Test
      1. 6.3.1 Calculations
      2. 6.3.2 Dynamic Calculation Results
      3. 6.3.3 Tested Results
      4. 6.3.4 Summary of Results
    4. 6.4 5W Pink Noise Test
      1. 6.4.1 Calculations
      2. 6.4.2 Dynamic Calculation Results
      3. 6.4.3 Tested Results
      4. 6.4.4 Summary of Results
    5. 6.5 10W 1kHz 85°C Test
      1. 6.5.1 Calculations
      2. 6.5.2 Dynamic Calculation Results
      3. 6.5.3 Tested Results
      4. 6.5.4 Summary of Results
  8. 7Overall Summary
  9. 8References
  10. 9Revision History

Sinusoidal Signal

The most commonly seen input signal used for thermal tests are sinusoidal signals, usually running continuously at 100Hz or 1kHz. Sinusoidal signals have an advantage for testing since it’s easy to track what the output power coming out of the amplifier is due to its continuous nature.

With a truly continuous output power rather than an average continuous power, sinusoidal signals make for a more strenuous tests compared to the other common signals. This also makes it the least representable to what most people will be using their audio systems.