SLAS638A January   2009  – October 2015 SN65HVS885

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Waveforms
    2. 7.2 Signal Conventions
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Digital Inputs
      2. 8.3.2 Debounce Filter
      3. 8.3.3 Shift Register
      4. 8.3.4 Temperature Sensor
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 System-Level EMC
      2. 9.1.2 Input Channel Switching Characteristics
      3. 9.1.3 Digital Interface Timing
      4. 9.1.4 Cascading for High Channel Count Input Modules
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input Stage
        2. 9.2.2.2 Setting Debounce Time
        3. 9.2.2.3 Using the HOT Indicator
        4. 9.2.2.4 Example: High-Voltage Sensing Application
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

10 Power Supply Recommendations

The SN65HVD885 operates within a recommended supply voltage range from 4.5 V to 5.5 V. A 0.1 µF or larger capacitor should be placed between VCC and ground to improve power supply noise immunity. A current limiting resistor can be used to reduce overall power consumption as described in Digital Inputs. The high voltage parallel field inputs can accept voltages ranging from 0 V to 34 V, however all other inputs must remain between 0 V to 5 V. Refer to the Recommended Operating Conditions table for more detailed voltage suggestions. High voltage field inputs should be buffered as shown in Figure 19 to improve input noise immunity.