SLASF90B October   2023  – May 2024 MSPM0C1103 , MSPM0C1104

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Functional Block Diagram
  6. Device Comparison
  7. Pin Configuration and Functions
    1. 6.1 Pin Diagrams
    2. 6.2 Pin Attributes
    3. 6.3 Signal Descriptions
    4. 6.4 Connections for Unused Pins
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Supply Current Characteristics
      1. 7.5.1 RUN/SLEEP Modes
      2. 7.5.2 STOP/STANDBY Modes
      3. 7.5.3 SHUTDOWN Mode
    6. 7.6  Power Supply Sequencing
      1. 7.6.1 POR and BOR
      2. 7.6.2 Power Supply Ramp
    7. 7.7  Flash Memory Characteristics
    8. 7.8  Timing Characteristics
    9. 7.9  Clock Specifications
      1. 7.9.1 System Oscillator (SYSOSC)
      2. 7.9.2 Low Frequency Oscillator (LFOSC)
    10. 7.10 Digital IO
      1. 7.10.1  Electrical Characteristics
      2. 7.10.2 Switching Characteristics
    11. 7.11 ADC
      1. 7.11.1 Electrical Characteristics
      2. 7.11.2 Switching Characteristics
      3. 7.11.3 Linearity Parameters
      4. 7.11.4 Typical Connection Diagram
    12. 7.12 Temperature Sensor
    13. 7.13 VREF
      1. 7.13.1 Voltage Characteristics
      2. 7.13.2 Electrical Characteristics
    14. 7.14 I2C
      1. 7.14.1 I2C Characteristics
      2. 7.14.2 I2C Filter
      3. 7.14.3 I2C Timing Diagram
    15. 7.15 SPI
      1. 7.15.1 SPI
      2. 7.15.2 SPI Timing Diagrams
    16. 7.16 UART
    17. 7.17 TIMx
    18. 7.18 Windowed Watchdog Characteristics
    19. 7.19 Emulation and Debug
      1. 7.19.1 SWD Timing
  9. Detailed Description
    1. 8.1  CPU
    2. 8.2  Operating Modes
      1. 8.2.1 Functionality by Operating Mode (MSPM0C110x)
    3. 8.3  Power Management Unit (PMU)
    4. 8.4  Clock Module (CKM)
    5. 8.5  DMA
    6. 8.6  Events
    7. 8.7  Memory
      1. 8.7.1 Memory Organization
      2. 8.7.2 Peripheral File Map
      3. 8.7.3 Peripheral Interrupt Vector
    8. 8.8  Flash Memory
    9. 8.9  SRAM
    10. 8.10 GPIO
    11. 8.11 IOMUX
    12. 8.12 ADC
    13. 8.13 Temperature Sensor
    14. 8.14 VREF
    15. 8.15 CRC
    16. 8.16 UART
    17. 8.17 SPI
    18. 8.18 I2C
    19. 8.19 WWDT
    20. 8.20 Timers (TIMx)
    21. 8.21 Device Analog Connections
    22. 8.22 Input/Output Diagrams
    23. 8.23 Serial Wire Debug Interface
    24. 8.24 Device Factory Constants
    25. 8.25 Identification
  10. Applications, Implementation, and Layout
    1. 9.1 Typical Application
      1. 9.1.1 Schematic
  11. 10Device and Documentation Support
    1. 10.1 Device Nomenclature
    2. 10.2 Tools and Software
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Description

MSPM0C110x microcontrollers (MCUs) are part of the MSP highly-integrated ultra-low-power 32-bit MCU family based on the enhanced Arm® Cortex®-M0+ core platform operating at up to 24MHz frequency. These cost-optimized MCUs offer high-performance analog peripheral integration, support extended temperature ranges from -40°C to 125°C, and operate with supply voltages from 1.62V to 3.6V.

The MSPM0C110x devices provide up to 16KB embedded flash program memory with 1KB SRAM. These MCUs incorporate a high-speed on-chip oscillator with an accuracy from -2% to +1.2%, eliminating the need for an external crystal. Additional features include a 1-channel DMA, CRC-16 accelerator, and a variety of high-performance analog peripherals such as one 12-bit 1.5Msps ADC with VDD as the voltage reference, and an on-chip temperature sensor. These devices also offer intelligent digital peripherals such as one 16-bit advanced timer, two 16-bit general purpose timer, one windowed watchdog timer, and a variety of communication peripherals including one UART, one SPI, and one I2C. These communication peripherals offer protocol support for LIN, IrDA, DALI, Manchester, smart card, SMBus, and PMBus.

The TI MSPM0 family of low-power MCUs consists of devices with varying degrees of analog and digital integration let customers find the MCU that meets their project needs. The architecture combined with extensive low-power modes is optimized to achieve extended battery life in portable measurement applications.

MSPM0C110x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get the design started quickly. Development kits include a LaunchPad™ kit available for purchase and design files for a target-socket board. TI also provides a free MSP Software Development Kit (SDK), which is available as a component of Code Composer Studio™ IDE desktop and cloud version within the TI Resource Explorer. MSPM0 MCUs are also supported by extensive online collateral, training with MSP Academy, and online support through the TI E2E™ support forums.

For complete module descriptions, see the MSPM0 C-Series 24MHz Microcontrollers Technical Reference Manual.

CAUTION: System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical overstress or disturbing of data or code memory. See MSP430™ System-Level ESD Considerations for more information, as the principles in that application note also apply to MSPM0 MCUs.