SLASFB5 May   2024 MSPM0L1228-Q1 , MSPM0L2228-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Functional Block Diagram
  6. Device Comparison
    1. 5.1 Device Comparison Chart
  7. Pin Configuration and Functions
    1. 6.1 Pin Diagrams
    2. 6.2 Pin Attributes
      1.      11
    3. 6.3 Signal Descriptions
      1.      13
      2.      14
      3.      15
      4.      16
      5.      17
      6.      18
      7.      19
      8.      20
      9.      21
      10.      22
      11.      23
      12.      24
      13.      25
      14.      26
      15.      27
      16.      28
      17.      29
    4. 6.4 Connections for Unused Pins
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Supply Current Characteristics
      1. 7.5.1 RUN/SLEEP Modes
      2. 7.5.2 STOP/STANDBY Modes
      3. 7.5.3 SHUTDOWN Mode
    6. 7.6  Power Supply Sequencing
      1. 7.6.1 Power Supply Ramp
      2. 7.6.2 POR and BOR
    7. 7.7  VBat Characteristics
    8. 7.8  Flash Memory Characteristics
    9. 7.9  Timing Characteristics
    10. 7.10 Clock Specifications
      1. 7.10.1 System Oscillator (SYSOSC)
      2. 7.10.2 Low Frequency Oscillator (LFOSC)
      3. 7.10.3 High Frequency Crystal/Clock
      4. 7.10.4 Low Frequency Crystal/Clock
    11. 7.11 Digital IO
      1. 7.11.1 Electrical Characteristics
      2. 7.11.2 Switching Characteristics
    12. 7.12 Analog Mux VBOOST
    13. 7.13 ADC
      1. 7.13.1 Electrical Characteristics
      2. 7.13.2 Switching Characteristics
      3. 7.13.3 Linearity Parameters
      4. 7.13.4 Typical Connection Diagram
    14. 7.14 Temperature Sensor
    15. 7.15 VREF
      1. 7.15.1 Electrical Characteristics ADC
      2. 7.15.2 Electrical Characteristics (Comparator)
      3. 7.15.3 Voltage Characteristics (ADC)
      4. 7.15.4 Voltage Characteristics (Comparator)
    16. 7.16 Comparator (COMP)
      1. 7.16.1 Comparator Electrical Characteristics
    17. 7.17 LCD
    18. 7.18 I2C
      1. 7.18.1 I2C Characteristics
      2. 7.18.2 I2C Filter
      3. 7.18.3 I2C Timing Diagram
    19. 7.19 SPI
      1. 7.19.1 SPI
      2. 7.19.2 SPI Timing Diagram
    20. 7.20 UART
    21. 7.21 TIMx
    22. 7.22 TRNG
      1. 7.22.1 TRNG Electrical Characteristics
      2. 7.22.2 TRNG Switching Characteristics
    23. 7.23 Emulation and Debug
      1. 7.23.1 SWD Timing
  9. Detailed Description
    1. 8.1  CPU
    2. 8.2  Operating Modes
      1. 8.2.1 Functionality by Operating Mode (MSPM0Lx22x)
    3. 8.3  Security
    4. 8.4  Power Management Unit (PMU)
    5. 8.5  Clock Module (CKM)
    6. 8.6  DMA
    7. 8.7  Events
    8. 8.8  Memory
      1. 8.8.1 Memory Organization
      2. 8.8.2 Peripheral File Map
      3. 8.8.3 Peripheral Interrupt Vector
    9. 8.9  Flash Memory
    10. 8.10 SRAM
    11. 8.11 GPIO
    12. 8.12 IOMUX
    13. 8.13 ADC
    14. 8.14 Temperature Sensor
    15. 8.15 LFSS
    16. 8.16 VREF
    17. 8.17 COMP
    18. 8.18 TRNG
    19. 8.19 AESADV
    20. 8.20 Keystore
    21. 8.21 CRC
    22. 8.22 UART
    23. 8.23 I2C
    24. 8.24 SPI
    25. 8.25 IWDT
    26. 8.26 WWDT
    27. 8.27 RTC_A
    28. 8.28 Timers (TIMx)
    29. 8.29 LCD
    30. 8.30 Device Analog Connections
    31. 8.31 Input/Output Diagrams
    32. 8.32 Serial Wire Debug Interface
    33. 8.33 Bootstrap Loader (BSL)
    34. 8.34 Device Factory Constants
    35. 8.35 Identification
  10. Applications, Implementation, and Layout
    1. 9.1 Typical Application
      1. 9.1.1 Schematic
  11. 10Device and Documentation Support
    1. 10.1 Getting Started and Next Steps
    2. 10.2 Device Nomenclature
    3. 10.3 Tools and Software
    4. 10.4 Documentation Support
    5. 10.5 Support Resources
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Description

MSPM0Lx22x microcontrollers (MCUs) are part of the highly integrated, ultra-low-power 32-bit MSPM0 MCU family based on the Arm® Cortex®-M0+ 32-bit core platform, operating at up to 32MHz frequency. These MCUs offer a blend of cost optimization and design flexibility for applications requiring 128KB to 256KB of flash memory in small packages (down to 4mm x 4mm) or high pin count packages (up to 80 pins). These devices include a VBAT backup island, an optional segmented LCD controller (on MSPM0L222x), cybersecurity enablers, and high-performance integrated analog, and provide excellent low-power performance across the operating temperature range.

Up to 256KB of embedded flash program memory with built-in error correction code (ECC) and up to 32KB SRAM with ECC and parity protection is provided. The flash memory is organized into two main banks to support field firmware updates, with address swap support provided between the two main banks. An additional 32-byte backup memory is provided in the VBAT island, supplied by the VBAT pin and retained even when the main supply (VDD) is lost.

The VBAT island provides a fully independent auxiliary power domain (separate from the main supply) which supplies low frequency modules from an alternate supply such as a battery, supercapacitor, or alternate voltage level (1.62V to 3.6V). The VBAT island includes the low-frequency clock system (LFOSC, LFXT), the real-time clock, the tamper detection, and timestamp logic, an independent watchdog timer, and a 32-byte backup memory. Up to five digital IOs are powered from the VBAT supply. A charging mode is provided to optionally trickle charge a supercapacitor on the VBAT pin from the primary (VDD) supply when VDD is greater than VBAT.

An ultra-low power segmented LCD controller (on MSPM0L2228 and MSPM0L2227 devices) supports driving LCD glass with up to 59 pins in a variety of mux and bias configurations, enabling low cost displays.

Flexible cybersecurity enablers can be used to support secure boot, secure in-field firmware updates, IP protection (execute-only memory), key storage, and more. Hardware acceleration is provided for a variety of AES symmetric cipher modes, as well as a TRNG entropy source. The cybersecurity architecture is Arm® PSA Level 1 certified.

A set of high-performance analog modules is provided, including a 12-bit 1.68Msps SAR ADC supporting up to 26 external channels. An analog comparator is provided to support low power or low latency monitoring of analog signals. An on-chip voltage reference (1.4V or 2.5V) can be used to provide a stable reference voltage to the ADC and comparator. Environmental monitoring of the die temperature, VDD voltage, and VBAT voltage is supported.

The TI MSPM0 family of low-power MCUs consists of devices with varying degrees of analog and digital integration allowing for customers find the MCU that meets their project's needs. The MSPM0 MCU platform combines the Arm Cortex-M0+ platform with a holistic ultra-low-power system architecture, allowing system designers to increase performance while reducing energy consumption.

MSPM0Lx22x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get the design started quickly. Development kits include a LaunchPad available for purchase. TI also provides a free MSP Software Development Kit (SDK), which is available as a component of Code Composer Studio™ IDE desktop and cloud version within the TI Resource Explorer. MSPM0 MCUs are also supported by extensive online collateral, training with MSP Academy, and online support through the TI E2E™ support forums.

For complete module descriptions, see the MSPM0 L-Series 32MHz Microcontrollers Technical Reference Manual.

CAUTION:

System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical overstress or disturbing of data or code memory. See MSP430™ System-Level ESD Considerations for more information. The principles in this application note are applicable to MSPM0 MCUs.