SLAU144K December 2004 – August 2022 MSP430AFE221 , MSP430AFE222 , MSP430AFE223 , MSP430AFE231 , MSP430AFE232 , MSP430AFE233 , MSP430AFE251 , MSP430AFE252 , MSP430AFE253 , MSP430F2001 , MSP430F2002 , MSP430F2003 , MSP430F2011 , MSP430F2012 , MSP430F2013 , MSP430F2101 , MSP430F2111 , MSP430F2112 , MSP430F2121 , MSP430F2122 , MSP430F2131 , MSP430F2132 , MSP430F2132-EP , MSP430F2232 , MSP430F2234 , MSP430F2252 , MSP430F2252-Q1 , MSP430F2254 , MSP430F2272 , MSP430F2272-Q1 , MSP430F2274 , MSP430F2274-EP , MSP430F233 , MSP430F2330 , MSP430F235 , MSP430F2350 , MSP430F2370 , MSP430F2410 , MSP430F2416 , MSP430F2417 , MSP430F2418 , MSP430F2419 , MSP430F247 , MSP430F2471 , MSP430F248 , MSP430F2481 , MSP430F249 , MSP430F2491 , MSP430F2616 , MSP430F2617 , MSP430F2618 , MSP430F2619 , MSP430G2001 , MSP430G2101 , MSP430G2102 , MSP430G2111 , MSP430G2112 , MSP430G2121 , MSP430G2131 , MSP430G2132 , MSP430G2152 , MSP430G2153 , MSP430G2201 , MSP430G2201-Q1 , MSP430G2202 , MSP430G2203 , MSP430G2210 , MSP430G2211 , MSP430G2212 , MSP430G2213 , MSP430G2221 , MSP430G2230 , MSP430G2231 , MSP430G2231-Q1 , MSP430G2232 , MSP430G2233 , MSP430G2252 , MSP430G2253 , MSP430G2302 , MSP430G2303 , MSP430G2312 , MSP430G2313 , MSP430G2332 , MSP430G2333 , MSP430G2352 , MSP430G2353 , MSP430G2402 , MSP430G2403 , MSP430G2412 , MSP430G2413 , MSP430G2432 , MSP430G2433 , MSP430G2444 , MSP430G2452 , MSP430G2453 , MSP430G2513 , MSP430G2533 , MSP430G2544 , MSP430G2553 , MSP430G2744 , MSP430G2755 , MSP430G2855 , MSP430G2955 , MSP430TCH5E
The MSP430 family is designed for ultralow-power applications and uses different operating modes shown in Figure 2-9.
The operating modes take into account three different needs:
The MSP430 typical current consumption is shown in Figure 2-8.
The low-power modes 0 to 4 are configured with the CPUOFF, OSCOFF, SCG0, and SCG1 bits in the status register The advantage of including the CPUOFF, OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the present operating mode is saved onto the stack during an interrupt service routine. Program flow returns to the previous operating mode if the saved SR value is not altered during the interrupt service routine. Program flow can be returned to a different operating mode by manipulating the saved SR value on the stack inside of the interrupt service routine. The mode-control bits and the stack can be accessed with any instruction.
When setting any of the mode-control bits, the selected operating mode takes effect immediately (see Figure 2-9). Peripherals operating with any disabled clock are disabled until the clock becomes active. The peripherals may also be disabled with their individual control register settings. All I/O port pins and RAM/registers are unchanged. Wake up is possible through all enabled interrupts.
SCG1 | SCG0 | OSCOFF | CPUOFF | Mode | CPU and Clocks Status |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | Active | CPU is active, all enabled clocks are active |
0 | 0 | 0 | 1 | LPM0 | CPU, MCLK are disabled, SMCLK, ACLK are active |
0 | 1 | 0 | 1 | LPM1 | CPU, MCLK are disabled. DCO and DC generator are disabled if the DCO is not used for SMCLK. ACLK is active. |
1 | 0 | 0 | 1 | LPM2 | CPU, MCLK, SMCLK, DCO are disabled. DC generator remains enabled. ACLK is active. |
1 | 1 | 0 | 1 | LPM3 | CPU, MCLK, SMCLK, DCO are disabled. DC generator disabled. ACLK is active. |
1 | 1 | 1 | 1 | LPM4 | CPU and all clocks disabled |