SLAU319AF July   2010  – September 2022

 

  1.   Abstract - MSP430™ Flash Devices Bootloader (BSL)
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Supplementary Online Information
    2. 1.2 Overview of BSL Features
    3. 1.3 BSL Invocation
      1. 1.3.1 Hardware BSL Invocation
        1. 1.3.1.1 MSP430 Devices With Shared JTAG Pins
          1. 1.3.1.1.1 Factors That Prevent BSL Invocation With Shared JTAG Pins
        2. 1.3.1.2 MSP430 Flash Devices With Dedicated JTAG Pins
          1. 1.3.1.2.1 Factors That Prevent BSL Invocation With Dedicated JTAG Pins
        3. 1.3.1.3 Devices With USB
      2. 1.3.2 Software BSL Invocation
    4. 1.4 UART Protocol
    5. 1.5 USB Protocol
  4. 2Bootloader Protocol – 1xx, 2xx, and 4xx Families
    1. 2.1 Synchronization Sequence
    2. 2.2 Commands
      1. 2.2.1 Unprotected Commands
      2. 2.2.2 Password Protected Commands
    3. 2.3 Programming Flow
    4. 2.4 Data Frame
      1. 2.4.1 Data-Stream Structure
      2. 2.4.2 Checksum
      3. 2.4.3 Example Sequence
      4. 2.4.4 Commands – Detailed Description
        1. 2.4.4.1  General
        2. 2.4.4.2  RX Data Block
        3. 2.4.4.3  RX Password
        4. 2.4.4.4  Mass Erase
        5. 2.4.4.5  Erase Segment
        6. 2.4.4.6  Erase Main or Info
        7. 2.4.4.7  Erase Check
        8. 2.4.4.8  Change Baud Rate
        9. 2.4.4.9  Set Memory Offset
        10. 2.4.4.10 Load PC
        11. 2.4.4.11 TX Data Block
        12. 2.4.4.12 TX BSL Version
    5. 2.5 Loadable BSL
    6. 2.6 Exiting the BSL
    7. 2.7 Password Protection
    8. 2.8 Code Protection Fuse
    9. 2.9 BSL Internal Settings and Resources
      1. 2.9.1 Chip Identification and BSL Version
      2. 2.9.2 Vectors to Call the BSL Externally
      3. 2.9.3 Initialization Status
      4. 2.9.4 Memory Allocation and Resources
  5. 3Bootloader Protocol – F5xx and F6xx Families
    1. 3.1 BSL Data Packet
    2. 3.2 UART Peripheral Interface (PI)
      1. 3.2.1 Wrapper
      2. 3.2.2 Abbreviations
      3. 3.2.3 Messages
      4. 3.2.4 Interface Specific Commands
        1. 3.2.4.1 Change Baud Rate
    3. 3.3 I2C Peripheral Interface
      1. 3.3.1 I2C Protocol Definition
      2. 3.3.2 Basic Protocol With Byte Level Acknowledge
      3. 3.3.3 I2C Protocol for BSL - Read From Slave
      4. 3.3.4 Acknowledge (ACK)
      5. 3.3.5 Wrapper
    4. 3.4 USB Peripheral Interface
      1. 3.4.1 Wrapper
      2. 3.4.2 Hardware Requirements
    5. 3.5 BSL Core Command Structure
      1. 3.5.1 Abbreviations
      2. 3.5.2 Command Descriptions
    6. 3.6 BSL Security
      1. 3.6.1 Protected Commands
      2. 3.6.2 RAM Erase
    7. 3.7 BSL Core Responses
      1. 3.7.1 Abbreviations
      2. 3.7.2 BSL Core Messages
      3. 3.7.3 BSL Version Number
      4. 3.7.4 Example Sequences for UART BSL
    8. 3.8 BSL Public Functions and Z-Area
      1. 3.8.1 Starting the BSL From an External Application
      2. 3.8.2 Return to BSL Function Description
  6. 4Bootloader Hardware
    1. 4.1 Hardware Description
      1. 4.1.1 Power Supply
      2. 4.1.2 Serial Interface
        1. 4.1.2.1 Level Shifting
        2. 4.1.2.2 Control of RST/NMI and TEST or TCK Pins
      3. 4.1.3 Target Connector
      4. 4.1.4 Parts List
  7. 5Differences Between Devices and Bootloader Versions
    1. 5.1 1xx, 2xx, and 4xx BSL Versions
    2. 5.2 Special Consideration for ROM BSL Version 1.10
    3. 5.3 1xx, 2xx, and 4xx BSL Known Issues
    4. 5.4 Special Note on the MSP430F14x Device Family BSL
    5. 5.5 F5xx and F6xx Flash-Based BSL Versions
  8. 6Bootloader PCB Layout Suggestion
  9. 7Revision History

Initialization Status

When activating the BSL, the following settings take effect:

  • Stop watchdog timer
  • Disable all interrupts (GIE = 0)
  • V1.10
    The stack pointer is not modified, except when it points to an excluded memory area. If so, it is initialized to 021Ah.
    V1.30 or higher
    The stack pointer is not modified if the BSL is called by the program through the warm-start vector. It is initialized to 0220h if the BSL starts by the BSL RESET sequence or is called by the program through the cold-start vector.
  • F1xx
    Determine basic clock module so that minimum frequency is 1.5 MHz:
    BCSCTL1 = 85h (RSEL = 5, XT2Off = 1)
    DCOCTL = 80h (DCO = 4, MOD = 0)
    BCSCTL2 = 00h only at cold start
    SR: SCG1 = 00h (SMCLK on) only at cold start
    F2xx
    Determine basic clock module so that minimum frequency is 1.5 MHz:
    BCSCTL1 = 88h (RSEL = 8, XT2Off = 1)
    DCOCTL = 80h (DCO = 4, MOD = 0)
    BCSCTL2 = 00h only at cold start
    SR: SCG1 = 00h (SMCLK on) only at cold start
    F4xx
    Determine FLL oscillator and system clock so that minimum frequency is 1.5 MHz:
    SCFI0 = 00h (D = 0, FN_x = 0)
    SCFI1 = 98h (N_DCO)
    SCFQCTL: (M = 0)
    SR: SCG0 = 1 (FLL loop control off)
    FLL_CTL1 = 00h only at cold start
  • SW-UART: Timer_A operates in continuous mode with MCLK source (Div = 1)
    CCR0 used for compare
    CCTL0 used for polling of CCIFG0
  • TX pin is set to output high for RS232 idle state
  • RX pin is set to input
  • Password-protected commands are locked (only at cold start)

After system initialization, the BSL is ready for operation and waits for the first synchronization sequence (SS) followed by a data frame containing the first BSL command.