SLAU472C February   2013  – November 2023 TAS2505 , TAS2505-Q1

 

  1.   1
  2.   Trademarks
  3. 1 TAS2505 Device Overview
  4. 2Description
    1. 2.1 Typical Circuit Configuration
    2. 2.2 Circuit Configuration with Internal LDO
  5. 3 TAS2505 Application
    1. 3.1 Terminal Descriptions
      1. 3.1.1 Digital Pins
      2. 3.1.2 Analog Pins
      3. 3.1.3 Multifunction Pins
      4. 3.1.4 Register Settings for Multifunction Pins
    2. 3.2 Audio Analog I/O
    3. 3.3 Analog Signals
      1. 3.3.1 Analog Inputs AINL and AINR
    4. 3.4 Audio DAC and Audio Analog Outputs
      1. 3.4.1  DAC
        1. 3.4.1.1 DAC Processing Blocks
        2. 3.4.1.2 DAC Processing Blocks – Signal Chain Details
          1. 3.4.1.2.1 Three Biquads, Filter A
          2. 3.4.1.2.2 Six Biquads, First-Order IIR, Filter A or B
        3. 3.4.1.3 DAC User-Programmable Filters
          1. 3.4.1.3.1 First-Order IIR Section
          2. 3.4.1.3.2 Biquad Section
        4. 3.4.1.4 DAC Interpolation Filter Characteristics
          1. 3.4.1.4.1 Interpolation Filter A
          2. 3.4.1.4.2 Interpolation Filter B
      2. 3.4.2  DAC Gain Setting
        1. 3.4.2.1 PowerTune Modes
        2. 3.4.2.2 DAC Digital-Volume Control
      3. 3.4.3  Interrupts
      4. 3.4.4  Programming DAC Digital Filter Coefficients
      5. 3.4.5  Updating DAC Digital Filter Coefficients During PLAY
      6. 3.4.6  Digital Mixing and Routing
      7. 3.4.7  Analog Audio Routing
        1. 3.4.7.1 Analog Output Volume Control
        2. 3.4.7.2 Headphone Analog Output Volume Control
        3. 3.4.7.3 Class-D Speaker Analog Output Volume Control
      8. 3.4.8  Analog Outputs
        1. 3.4.8.1 Headphone Drivers
        2. 3.4.8.2 Speaker Driver
      9. 3.4.9  Audio Output-Stage Power Configurations
      10. 3.4.10 5V LDO
      11. 3.4.11 POR
      12. 3.4.12 DAC Setup
    5. 3.5 PowerTune
      1. 3.5.1 PowerTune Modes
        1. 3.5.1.1 DAC - Programming PTM_P1 to PTM_P4
        2. 3.5.1.2 Processing Blocks
      2. 3.5.2 DAC Power Consumption
        1. 3.5.2.1 DAC, Mono, 48 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        2. 3.5.2.2 DAC, Mono, Lowest Power Consumption
        3. 3.5.2.3 DAC, Mono, 8 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6 V
        4. 3.5.2.4 DAC, Mono, Lowest Power Consumption
      3. 3.5.3 Speaker output Power Consumption
        1. 3.5.3.1 Speaker output, Mono, 48 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        2. 3.5.3.2 Speaker output, Mono, Lowest Power Consumption
        3. 3.5.3.3 Speaker output, Mono, 8 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        4. 3.5.3.4 Speaker output, Mono, Lowest Power Consumption
      4. 3.5.4 Headphone output Power Consumption
        1. 3.5.4.1 Headphone output, Mono, 48 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        2. 3.5.4.2 Headphone output, Mono, Lowest Power Consumption, DVDD = IOVDD = 1.8 V, AVDD = 1.5 V, SPKVDD = 3.6V
        3. 3.5.4.3 Headphone output, Mono, 8 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        4. 3.5.4.4 Headphone output, Mono, Lowest Power Consumption, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
    6. 3.6 CLOCK Generation and PLL
      1. 3.6.1 PLL
        1. 3.6.1.1 PLL Description
    7. 3.7 Digital Audio and Control Interface
      1. 3.7.1 Digital Audio Interface
        1. 3.7.1.1 Right-Justified Mode
        2. 3.7.1.2 Left-Justified Mode
        3. 3.7.1.3 I2S Mode
        4. 3.7.1.4 DSP Mode
        5. 3.7.1.5 Primary and Secondary Digital Audio Interface Selection
      2. 3.7.2 Control Interface
        1. 3.7.2.1 I2C Control Mode
        2. 3.7.2.2 SPI Digital Interface
    8. 3.8 Power Supply
      1. 3.8.1 System Level Considerations
        1. 3.8.1.1 All Supplies from Single Voltage Rail with using the internal LDO (2.75V to 5.5V)
          1. 3.8.1.1.1 Standby Mode
          2. 3.8.1.1.2 Shutdown Mode
        2. 3.8.1.2 Supply from Dual Voltage Rails (2.75V to 5.5V and 1.8V)
          1. 3.8.1.2.1 Standby Mode
          2. 3.8.1.2.2 Shutdown Mode
        3. 3.8.1.3 Other Supply Options
    9. 3.9 Device Special Functions
      1. 3.9.1 Interrupts
  6. 4Device Initialization
    1. 4.1 Power On Sequence
      1. 4.1.1 Power On Sequence 1 – Separate Digital and Analog Supplies
      2. 4.1.2 Power On Sequence 2 – Shared 1.8 V Analog Supply to DVDD
    2. 4.2 Device Initialization
      1. 4.2.1 Reset by RST pin and POR
      2. 4.2.2 Device Start-Up Lockout Times
      3. 4.2.3 PLL Start-Up
      4. 4.2.4 Power-Stage Reset
      5. 4.2.5 Software Power Down
      6. 4.2.6 Device Common Mode Voltage
  7. 5Example Setups
    1. 5.1 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs
    2. 5.2 Example Register Setup to Play Digital Data Through DAC and Headphone Output
    3. 5.3 Example Register Setup to Play AINL and AINR Through Headphone/Speaker Outputs
    4. 5.4 Example Register Setup to Play AINL and AINR Through Headphone Output
    5. 5.5 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs With 3 Programmable Biquads
    6. 5.6 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs With 6 Programmable Biquads
  8. 6Register Map
    1. 6.1 TAS2505 Register Map
      1. 6.1.1  Control Registers, Page 0 (Default Page): Clock Multipliers, Dividers, Serial Interfaces, Flags, Interrupts, and GPIOs
      2. 6.1.2  Control Registers, Page 1: DAC Routing, Power-Controls and MISC Logic Related Programmabilities
      3. 6.1.3  Page 2 - 43: Reserved Register
      4. 6.1.4  Page 44: DAC Programmable Coefficients RAM
      5. 6.1.5  Page 45 - 52: DAC Programmable Coefficients RAM
      6. 6.1.6  Page 53 - 61: Reserved Register
      7. 6.1.7  Page 62 - 70: DAC Programmable Coefficients RAM
      8. 6.1.8  Pages 71 – 255: Reserved Register
      9. 6.1.9  DAC Coefficients A+B
      10. 6.1.10 DAC Defaults
  9. 7Revision History

DAC User-Programmable Filters

Depending on the selected processing block, different types and orders of digital filtering are available. Up to six biquad sections are available for specific processing blocks.

The coefficients of the available filters are arranged as sequentially-indexed coefficients in two banks. If adaptive filtering is chosen, the coefficient banks can be switched in real time.

When the DAC is running, the user-programmable filter coefficients are locked and cannot be accessed for either read or write.

However, the TAS2505 offers an adaptive filter mode as well. Setting page 8, register 1, bit D2 = 1 turns on double buffering of the coefficients. In this mode, filter coefficients can be updated through the host and activated without stopping and restarting the DAC. This enables advanced adaptive filtering applications.

In the double-buffering scheme, all coefficients are stored in two buffers (buffers A and B). When the DAC is running and adaptive filtering mode is turned on, setting page 44, register 1, bit D0 = 1 switches the coefficient buffers at the next start of a sampling period. This bit is set back to 0 after the switch occurs. At the same time, page 44, register 1, bit D1 toggles.

The flag in page 44, register 1, bit D1 indicates which of the two buffers is actually in use.

Page 44, register 1, bit D1 = 0: buffer A is in use by the DAC engine; bit D1 = 1: buffer B is in use.

While the device is running, coefficient updates are always made to the buffer not in use by the DAC, regardless of the buffer to which the coefficients have been written.

Table 3-4 Adaptive-Mode Filter-Coefficient Buffer Switching
DAC Powered UpPage 44, Reg 1, Bit D1Coefficient Buffer in UseI2C Writes toWill Updates
No0NoneC1, buffer AC1, buffer A
No0NoneC1, buffer BC1, buffer B
Yes0Buffer AC1, buffer AC1, buffer B
Yes0Buffer AC1, buffer BC1, buffer B
Yes1Buffer BC1, buffer AC1, buffer A
Yes1Buffer BC1, buffer BC1, buffer A

The user-programmable coefficients C1 to C70 for the DAC processing blocks are defined on pages 44 to 46 for buffer A and pages 62 to 64 for buffer B.

The coefficients of these filters are each 24-bit, 2s-complement format, occupying three consecutive 8-bit registers in the register space. Specifically, the filter coefficients are in 1.23 (one dot 23) format with a range from –1.0 (0x800000) to 0.99999988079071044921875 (0x7FFFFF) .