SLAU472C February   2013  – November 2023 TAS2505 , TAS2505-Q1

 

  1.   1
  2.   Trademarks
  3. 1 TAS2505 Device Overview
  4. 2Description
    1. 2.1 Typical Circuit Configuration
    2. 2.2 Circuit Configuration with Internal LDO
  5. 3 TAS2505 Application
    1. 3.1 Terminal Descriptions
      1. 3.1.1 Digital Pins
      2. 3.1.2 Analog Pins
      3. 3.1.3 Multifunction Pins
      4. 3.1.4 Register Settings for Multifunction Pins
    2. 3.2 Audio Analog I/O
    3. 3.3 Analog Signals
      1. 3.3.1 Analog Inputs AINL and AINR
    4. 3.4 Audio DAC and Audio Analog Outputs
      1. 3.4.1  DAC
        1. 3.4.1.1 DAC Processing Blocks
        2. 3.4.1.2 DAC Processing Blocks – Signal Chain Details
          1. 3.4.1.2.1 Three Biquads, Filter A
          2. 3.4.1.2.2 Six Biquads, First-Order IIR, Filter A or B
        3. 3.4.1.3 DAC User-Programmable Filters
          1. 3.4.1.3.1 First-Order IIR Section
          2. 3.4.1.3.2 Biquad Section
        4. 3.4.1.4 DAC Interpolation Filter Characteristics
          1. 3.4.1.4.1 Interpolation Filter A
          2. 3.4.1.4.2 Interpolation Filter B
      2. 3.4.2  DAC Gain Setting
        1. 3.4.2.1 PowerTune Modes
        2. 3.4.2.2 DAC Digital-Volume Control
      3. 3.4.3  Interrupts
      4. 3.4.4  Programming DAC Digital Filter Coefficients
      5. 3.4.5  Updating DAC Digital Filter Coefficients During PLAY
      6. 3.4.6  Digital Mixing and Routing
      7. 3.4.7  Analog Audio Routing
        1. 3.4.7.1 Analog Output Volume Control
        2. 3.4.7.2 Headphone Analog Output Volume Control
        3. 3.4.7.3 Class-D Speaker Analog Output Volume Control
      8. 3.4.8  Analog Outputs
        1. 3.4.8.1 Headphone Drivers
        2. 3.4.8.2 Speaker Driver
      9. 3.4.9  Audio Output-Stage Power Configurations
      10. 3.4.10 5V LDO
      11. 3.4.11 POR
      12. 3.4.12 DAC Setup
    5. 3.5 PowerTune
      1. 3.5.1 PowerTune Modes
        1. 3.5.1.1 DAC - Programming PTM_P1 to PTM_P4
        2. 3.5.1.2 Processing Blocks
      2. 3.5.2 DAC Power Consumption
        1. 3.5.2.1 DAC, Mono, 48 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        2. 3.5.2.2 DAC, Mono, Lowest Power Consumption
        3. 3.5.2.3 DAC, Mono, 8 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6 V
        4. 3.5.2.4 DAC, Mono, Lowest Power Consumption
      3. 3.5.3 Speaker output Power Consumption
        1. 3.5.3.1 Speaker output, Mono, 48 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        2. 3.5.3.2 Speaker output, Mono, Lowest Power Consumption
        3. 3.5.3.3 Speaker output, Mono, 8 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        4. 3.5.3.4 Speaker output, Mono, Lowest Power Consumption
      4. 3.5.4 Headphone output Power Consumption
        1. 3.5.4.1 Headphone output, Mono, 48 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        2. 3.5.4.2 Headphone output, Mono, Lowest Power Consumption, DVDD = IOVDD = 1.8 V, AVDD = 1.5 V, SPKVDD = 3.6V
        3. 3.5.4.3 Headphone output, Mono, 8 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        4. 3.5.4.4 Headphone output, Mono, Lowest Power Consumption, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
    6. 3.6 CLOCK Generation and PLL
      1. 3.6.1 PLL
        1. 3.6.1.1 PLL Description
    7. 3.7 Digital Audio and Control Interface
      1. 3.7.1 Digital Audio Interface
        1. 3.7.1.1 Right-Justified Mode
        2. 3.7.1.2 Left-Justified Mode
        3. 3.7.1.3 I2S Mode
        4. 3.7.1.4 DSP Mode
        5. 3.7.1.5 Primary and Secondary Digital Audio Interface Selection
      2. 3.7.2 Control Interface
        1. 3.7.2.1 I2C Control Mode
        2. 3.7.2.2 SPI Digital Interface
    8. 3.8 Power Supply
      1. 3.8.1 System Level Considerations
        1. 3.8.1.1 All Supplies from Single Voltage Rail with using the internal LDO (2.75V to 5.5V)
          1. 3.8.1.1.1 Standby Mode
          2. 3.8.1.1.2 Shutdown Mode
        2. 3.8.1.2 Supply from Dual Voltage Rails (2.75V to 5.5V and 1.8V)
          1. 3.8.1.2.1 Standby Mode
          2. 3.8.1.2.2 Shutdown Mode
        3. 3.8.1.3 Other Supply Options
    9. 3.9 Device Special Functions
      1. 3.9.1 Interrupts
  6. 4Device Initialization
    1. 4.1 Power On Sequence
      1. 4.1.1 Power On Sequence 1 – Separate Digital and Analog Supplies
      2. 4.1.2 Power On Sequence 2 – Shared 1.8 V Analog Supply to DVDD
    2. 4.2 Device Initialization
      1. 4.2.1 Reset by RST pin and POR
      2. 4.2.2 Device Start-Up Lockout Times
      3. 4.2.3 PLL Start-Up
      4. 4.2.4 Power-Stage Reset
      5. 4.2.5 Software Power Down
      6. 4.2.6 Device Common Mode Voltage
  7. 5Example Setups
    1. 5.1 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs
    2. 5.2 Example Register Setup to Play Digital Data Through DAC and Headphone Output
    3. 5.3 Example Register Setup to Play AINL and AINR Through Headphone/Speaker Outputs
    4. 5.4 Example Register Setup to Play AINL and AINR Through Headphone Output
    5. 5.5 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs With 3 Programmable Biquads
    6. 5.6 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs With 6 Programmable Biquads
  8. 6Register Map
    1. 6.1 TAS2505 Register Map
      1. 6.1.1  Control Registers, Page 0 (Default Page): Clock Multipliers, Dividers, Serial Interfaces, Flags, Interrupts, and GPIOs
      2. 6.1.2  Control Registers, Page 1: DAC Routing, Power-Controls and MISC Logic Related Programmabilities
      3. 6.1.3  Page 2 - 43: Reserved Register
      4. 6.1.4  Page 44: DAC Programmable Coefficients RAM
      5. 6.1.5  Page 45 - 52: DAC Programmable Coefficients RAM
      6. 6.1.6  Page 53 - 61: Reserved Register
      7. 6.1.7  Page 62 - 70: DAC Programmable Coefficients RAM
      8. 6.1.8  Pages 71 – 255: Reserved Register
      9. 6.1.9  DAC Coefficients A+B
      10. 6.1.10 DAC Defaults
  9. 7Revision History

CLOCK Generation and PLL

The TAS2505 supports a wide range of options for generating clocks for the DAC sections as well as interface and other control blocks as shown in . The clocks for the DAC require a source reference clock. This clock can be provided on a variety of device pins, such as the MCLK, BCLK, or GPIO pins. The source reference clock for the codec can be chosen by programming the CODEC_CLKIN value on page 0, register 4, bits D1–D0. The CODEC_CLKIN can then be routed through highly-flexible clock dividers shown in to generate the various clocks required for the DAC and the Digital Effects section. In the event that the desired audio clocks cannot be generated from the reference clocks on MCLK, BCLK, or GPIO, the TAS2505 also provides the option of using the on-chip PLL which supports a wide range of fractional multiplication values to generate the required clocks. Starting from CODEC_CLKIN, the TAS2505 provides several programmable clock dividers to help achieve a variety of sampling rates for the DAC and clocks for the Digital Effects sections.

GUID-95BB7A34-5070-4DFF-A507-84C38DD77FA7-low.gifFigure 3-8 Clock Distribution Tree
Equation 6. GUID-B0E9DB19-5953-4684-AD9B-6B66DF10179C-low.gif
Table 3-13 CODEC CLKIN Clock Dividers
Divider Bits
NDAC Page 0, register 11, bits D6–D0
MDAC Page 0, register 12, bits D6–D0
DOSR Page 0, register 13, bits D1–D0 and page 0, register 14, bits D7–D0

The DAC modulator is clocked by DAC_MOD_CLK. For proper power-up operation of the DAC channel, these clocks must be enabled by configuring the NDAC and MDAC clock dividers (page 0, register 11, bit D7 = 1 and page 0, register 12, bit D7 = 1). When the DAC channel is powered down, the device internally initiates a power-down sequence for proper shut-down. During this shutdown sequence, the NDAC and MDAC dividers must not be powered down, or else a proper low-power shutdown may not take place. The user can read back the power-status flag at page 0, register 37, bit D7 and page 0, register 37, bit D3. When both the flags indicate power-down, the MDAC divider may be powered down, followed by the NDAC divider.

In general, all the root clock dividers should be powered down only after the child clock dividers have been powered down for proper operation.

The TAS2505 also has options for routing some of the internal clocks to the GPIO output pin to be used as general-purpose clocks in the system. The feature is shown in Figure 3-10.

GUID-08A623D2-FC58-4BAA-8558-4CF508C86698-low.gifFigure 3-9 BCLK Output Options

In the mode when TAS2505 is configured to drive the BCLK pin (page 0, register 27, bit D3 = 1), it can be driven as a divided value of BDIV_CLKIN. The division value can be programmed in page 0, register 30, bits D6–D0 from 1 to 128 (see Figure 3-9). The BDIV_CLKIN can itself be configured to be one of DAC_CLK (DAC DSP clock) or DAC_MOD_CLK by configuring the BDIV_CLKIN multiplexer in page 0, register 29, bits D1-D0. Additionally, a general-purpose clock can be driven out on GPIO.

This clock can be a divided-down version of CDIV_CLKIN. The value of this clock divider can be programmed from 1 to 128 by writing to page 0, register 26, bits D6–D0. The CDIV_CLKIN can itself be programmed as one of the clocks among the list shown in Figure 3-10. This can be controlled by programming the multiplexer in page 0, register 25, bits D2–D0.

GUID-7BD8F8ED-BE48-48CE-9242-FFAD1612B8EB-low.gifFigure 3-10 General-Purpose Clock Output Options
Table 3-14 Maximum TAS2505 Clock Frequencies
ClockDVDD ≥ 1.65 V
CODEC_CLKIN≤ 110 MHz
DAC_CLK≤ 49.152 MHz
DAC_MOD_CLK6.758 MHz
DAC_fS0.192 MHz
BDIV_CLKIN55 MHz
CDIV_CLKIN100 MHz when M is odd
110 MHz when M is even