SLAU472C February   2013  – November 2023 TAS2505 , TAS2505-Q1

 

  1.   1
  2.   Trademarks
  3. 1 TAS2505 Device Overview
  4. 2Description
    1. 2.1 Typical Circuit Configuration
    2. 2.2 Circuit Configuration with Internal LDO
  5. 3 TAS2505 Application
    1. 3.1 Terminal Descriptions
      1. 3.1.1 Digital Pins
      2. 3.1.2 Analog Pins
      3. 3.1.3 Multifunction Pins
      4. 3.1.4 Register Settings for Multifunction Pins
    2. 3.2 Audio Analog I/O
    3. 3.3 Analog Signals
      1. 3.3.1 Analog Inputs AINL and AINR
    4. 3.4 Audio DAC and Audio Analog Outputs
      1. 3.4.1  DAC
        1. 3.4.1.1 DAC Processing Blocks
        2. 3.4.1.2 DAC Processing Blocks – Signal Chain Details
          1. 3.4.1.2.1 Three Biquads, Filter A
          2. 3.4.1.2.2 Six Biquads, First-Order IIR, Filter A or B
        3. 3.4.1.3 DAC User-Programmable Filters
          1. 3.4.1.3.1 First-Order IIR Section
          2. 3.4.1.3.2 Biquad Section
        4. 3.4.1.4 DAC Interpolation Filter Characteristics
          1. 3.4.1.4.1 Interpolation Filter A
          2. 3.4.1.4.2 Interpolation Filter B
      2. 3.4.2  DAC Gain Setting
        1. 3.4.2.1 PowerTune Modes
        2. 3.4.2.2 DAC Digital-Volume Control
      3. 3.4.3  Interrupts
      4. 3.4.4  Programming DAC Digital Filter Coefficients
      5. 3.4.5  Updating DAC Digital Filter Coefficients During PLAY
      6. 3.4.6  Digital Mixing and Routing
      7. 3.4.7  Analog Audio Routing
        1. 3.4.7.1 Analog Output Volume Control
        2. 3.4.7.2 Headphone Analog Output Volume Control
        3. 3.4.7.3 Class-D Speaker Analog Output Volume Control
      8. 3.4.8  Analog Outputs
        1. 3.4.8.1 Headphone Drivers
        2. 3.4.8.2 Speaker Driver
      9. 3.4.9  Audio Output-Stage Power Configurations
      10. 3.4.10 5V LDO
      11. 3.4.11 POR
      12. 3.4.12 DAC Setup
    5. 3.5 PowerTune
      1. 3.5.1 PowerTune Modes
        1. 3.5.1.1 DAC - Programming PTM_P1 to PTM_P4
        2. 3.5.1.2 Processing Blocks
      2. 3.5.2 DAC Power Consumption
        1. 3.5.2.1 DAC, Mono, 48 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        2. 3.5.2.2 DAC, Mono, Lowest Power Consumption
        3. 3.5.2.3 DAC, Mono, 8 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6 V
        4. 3.5.2.4 DAC, Mono, Lowest Power Consumption
      3. 3.5.3 Speaker output Power Consumption
        1. 3.5.3.1 Speaker output, Mono, 48 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        2. 3.5.3.2 Speaker output, Mono, Lowest Power Consumption
        3. 3.5.3.3 Speaker output, Mono, 8 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        4. 3.5.3.4 Speaker output, Mono, Lowest Power Consumption
      4. 3.5.4 Headphone output Power Consumption
        1. 3.5.4.1 Headphone output, Mono, 48 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        2. 3.5.4.2 Headphone output, Mono, Lowest Power Consumption, DVDD = IOVDD = 1.8 V, AVDD = 1.5 V, SPKVDD = 3.6V
        3. 3.5.4.3 Headphone output, Mono, 8 kHz, Highest Performance, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
        4. 3.5.4.4 Headphone output, Mono, Lowest Power Consumption, DVDD = IOVDD = 1.8 V, AVDD = 1.8 V, SPKVDD = 3.6V
    6. 3.6 CLOCK Generation and PLL
      1. 3.6.1 PLL
        1. 3.6.1.1 PLL Description
    7. 3.7 Digital Audio and Control Interface
      1. 3.7.1 Digital Audio Interface
        1. 3.7.1.1 Right-Justified Mode
        2. 3.7.1.2 Left-Justified Mode
        3. 3.7.1.3 I2S Mode
        4. 3.7.1.4 DSP Mode
        5. 3.7.1.5 Primary and Secondary Digital Audio Interface Selection
      2. 3.7.2 Control Interface
        1. 3.7.2.1 I2C Control Mode
        2. 3.7.2.2 SPI Digital Interface
    8. 3.8 Power Supply
      1. 3.8.1 System Level Considerations
        1. 3.8.1.1 All Supplies from Single Voltage Rail with using the internal LDO (2.75V to 5.5V)
          1. 3.8.1.1.1 Standby Mode
          2. 3.8.1.1.2 Shutdown Mode
        2. 3.8.1.2 Supply from Dual Voltage Rails (2.75V to 5.5V and 1.8V)
          1. 3.8.1.2.1 Standby Mode
          2. 3.8.1.2.2 Shutdown Mode
        3. 3.8.1.3 Other Supply Options
    9. 3.9 Device Special Functions
      1. 3.9.1 Interrupts
  6. 4Device Initialization
    1. 4.1 Power On Sequence
      1. 4.1.1 Power On Sequence 1 – Separate Digital and Analog Supplies
      2. 4.1.2 Power On Sequence 2 – Shared 1.8 V Analog Supply to DVDD
    2. 4.2 Device Initialization
      1. 4.2.1 Reset by RST pin and POR
      2. 4.2.2 Device Start-Up Lockout Times
      3. 4.2.3 PLL Start-Up
      4. 4.2.4 Power-Stage Reset
      5. 4.2.5 Software Power Down
      6. 4.2.6 Device Common Mode Voltage
  7. 5Example Setups
    1. 5.1 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs
    2. 5.2 Example Register Setup to Play Digital Data Through DAC and Headphone Output
    3. 5.3 Example Register Setup to Play AINL and AINR Through Headphone/Speaker Outputs
    4. 5.4 Example Register Setup to Play AINL and AINR Through Headphone Output
    5. 5.5 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs With 3 Programmable Biquads
    6. 5.6 Example Register Setup to Play Digital Data Through DAC and Headphone/Speaker Outputs With 6 Programmable Biquads
  8. 6Register Map
    1. 6.1 TAS2505 Register Map
      1. 6.1.1  Control Registers, Page 0 (Default Page): Clock Multipliers, Dividers, Serial Interfaces, Flags, Interrupts, and GPIOs
      2. 6.1.2  Control Registers, Page 1: DAC Routing, Power-Controls and MISC Logic Related Programmabilities
      3. 6.1.3  Page 2 - 43: Reserved Register
      4. 6.1.4  Page 44: DAC Programmable Coefficients RAM
      5. 6.1.5  Page 45 - 52: DAC Programmable Coefficients RAM
      6. 6.1.6  Page 53 - 61: Reserved Register
      7. 6.1.7  Page 62 - 70: DAC Programmable Coefficients RAM
      8. 6.1.8  Pages 71 – 255: Reserved Register
      9. 6.1.9  DAC Coefficients A+B
      10. 6.1.10 DAC Defaults
  9. 7Revision History

Power Supply

The TAS2505 integrates a large amount of digital and analog functionality, and each of these blocks can be powered separately to enable the system to select appropriate power supplies for desired performance and power consumption. The device has separate power domains for digital IO, digital core, analog core, analog input, headphone driver, and speaker drivers. If desired, all of the supplies (except for the supplies for speaker drivers, which can directly connect to the battery) can be connected together and be supplied from one source in the range of 1.65 to 1.95V. Individually, the IOVDD voltage can be supplied in the range of 1.1V to 3.6V. For improved power efficiency, the digital core power supply can range from 1.26V to 1.95V. The analog core supply can either be derived from the internal LDO accepting an SPKVDD voltage in the range of 2.7V to 5.5V, or the AVDD pin can directly be driven with a voltage in the range of 1.5V to 1.95V. The speaker driver voltages (SPKVDD) can range from 2.7V to 5.5V.

  • IOVDD

    The IOVDD pin supplies the digital IO cells of the device. The voltage of IOVDD can range from 1.1 to 3.6V and is determined by the digital IO voltage of the rest of the system.

  • DVDD

    This pin supplies the digital core of the device. Lower DVDD voltages cause lower power dissipation. If efficient switched-mode power supplies are used in the system, system power can be optimized using low DVDD voltages. the full clock range is only supported with DVDD in the range of 1.65 to 1.95V.

  • AVDD

    This pin supply the analog core of the device and the headphone amplifier of the device. The analog core voltage (AVDD) should be in the range of 1.5 to 1.95V for specified performance. For AVDD voltages above 1.8V, the internal common mode voltage can be set to 0.9V (Page 1, Register 10, D6 = 0, default) resulting in 500mVrms full-scale voltage internally. For analog voltages below 1.8V, the internal common mode voltage should be set to 0.75V (Page 1, Register 10, D6 = 1), resulting in 375mVrms internal full scale voltage.

    Note:

    At powerup, PLL and HP Level Shifters powered down to save leakage current issue when DVDD is powered up and AVDD is powered down. This powered down must be powered up by writing Page 1, Reg 2, D3 = 0 at the time AVDD is applied, either from internal LDO or through external LDO.

  • SPKVDD

    This pin supply the Class-D speaker driver of the device. The speaker supply voltages should be in the range of 2.7 to 5.5V for specified performance. This pin also can be an input supply for the internal LDO. More detail on the internal LDO, please refer to Section 3.4.10. Note that, even if the integrated speaker drivers are not utilized on the device, these supplies should still be connected (typically to battery voltage) and at a greater or equal voltage to all the other power supplies.