SLAU664B February   2016  – August 2017

 

  1.   MSP430FR2311 LaunchPad™ Development Kit (MSP‑EXP430FR2311)
    1.     Trademarks
    2. 1 Getting Started
      1. 1.1 Introduction
      2. 1.2 Key Features
      3. 1.3 What's Included
        1. 1.3.1 Kit Contents
        2. 1.3.2 Software Examples
      4. 1.4 First Steps: Out-of-Box Experience
        1. 1.4.1 Connecting to the Computer
        2. 1.4.2 Running the Out-of-Box Demo
      5. 1.5 Next Steps: Looking Into the Provided Code
    3. 2 Hardware
      1. 2.1 Block Diagram
      2. 2.2 Hardware Features
        1. 2.2.1 MSP430FR2311 MCU
        2. 2.2.2 eZ-FET Onboard Emulator With EnergyTrace™ Software
        3. 2.2.3 Emulator Connection: Isolation Jumper Block
        4. 2.2.4 Application (or "Backchannel") UART
        5. 2.2.5 Special Features
          1. 2.2.5.1 Smart Analog Combo (SAC)
      3. 2.3 Power
        1. 2.3.1 eZ-FET USB Power
        2. 2.3.2 BoosterPack Plug-In-Module and External Power Supply
      4. 2.4 Measure MSP430 MCU Current Draw
      5. 2.5 Clocking
      6. 2.6 Using the eZ-FET Emulator With a Different Target
      7. 2.7 BoosterPack Plug-in Module Pinout
      8. 2.8 Design Files
        1. 2.8.1 Hardware
        2. 2.8.2 Software
      9. 2.9 Hardware Change log
    4. 3 Software Examples
      1. 3.1 Out-of-Box Software Example
        1. 3.1.1 Source File Structure
        2. 3.1.2 Power Measurement
      2. 3.2 Blink LED Example
        1. 3.2.1 Source File Structure
      3. 3.3 Software I2C Example
        1. 3.3.1 Source File Structure
    5. 4 Resources
      1. 4.1 Integrated Development Environments
        1. 4.1.1 TI Cloud Development Tools
          1. 4.1.1.1 TI Resource Explorer Cloud
          2. 4.1.1.2 Code Composer Studio Cloud
        2. 4.1.2 Code Composer Studio IDE
        3. 4.1.3 IAR Embedded Workbench for Texas Instruments MSP430
        4. 4.1.4 Energia
      2. 4.2 LaunchPad Websites
      3. 4.3 MSPWare Software and TI Resource Explorer
      4. 4.4 FRAM Utilities
      5. 4.5 MSP430FR2311MCU
        1. 4.5.1 Device Documentation
        2. 4.5.2 MSP430FR2311 MCU Code Examples
        3. 4.5.3 MSP430 MCU Application Notes and TI Designs
      6. 4.6 Community Resources
        1. 4.6.1 TI E2E Online Community
        2. 4.6.2 Community-at-Large
    6. 5 FAQ
    7. 6 Schematics
  2.   Revision History

Smart Analog Combo (SAC)

The MSP430FR2311 MCU LaunchPad development kit features pins to access the smart analog combo on the device. These pins are accessed on jumpers J7, J8 and J9 where the smart analog combo operational amplifier is connected to the onboard photodiode circuit. These pins are also connected to the BoosterPack plug-in module header pins. For applications that use the SAC and a connected BoosterPack plug-in module, be sure to check for any pin conflicts. The photodiode circuit can be disconnected from the SAC using jumpers J7, J8 and J9. The user can connect an external analog sensor circuit to the SAC by removing jumpers J7, J8 and J9 and connecting their circuit to the appropriate header pins through the BoosterPack plug-in module headers or the jumpers near the light sensor circuit.

To adjust the light sensor circuits' sensitivity the user can adjust either the software or the hardware. By changing the value of R3 and C6 the user can change the operational amplifiers low-pass filter and sensitivity to the photodiodes current. The user can also adjust the calculations performed in the software to adjust the sensitivity of the circuit to their desired level.