SLAU678C March   2016  – November 2022

 

  1.   Abstract
  2.   Trademarks
  3. 1Getting Started
    1. 1.1 Introduction
    2. 1.2 Key Features
    3. 1.3 What's Included
      1. 1.3.1 Kit Contents
      2. 1.3.2 Software Examples
    4. 1.4 First Steps: Out-of-Box Experience
      1. 1.4.1 Connecting to the Computer
      2. 1.4.2 Running the Out-of-Box Demo
        1. 1.4.2.1 Live Temperature Mode
        2. 1.4.2.2 FRAM Data Log Mode
        3. 1.4.2.3 SD Card Data Log Mode
    5. 1.5 Next Steps: Looking Into the Provided Code
  4. 2Hardware
    1. 2.1 Block Diagram
    2. 2.2 Hardware Features
      1. 2.2.1 MSP430FR5994 MCU
      2. 2.2.2 eZ-FET Onboard Debug Probe With EnergyTrace++ Technology
      3. 2.2.3 Debug Probe Connection: Isolation Jumper Block
      4. 2.2.4 Application (or Backchannel) UART
      5. 2.2.5 Special Features
        1. 2.2.5.1 microSD Card
        2. 2.2.5.2 220-mF Super Capacitor
    3. 2.3 Power
      1. 2.3.1 eZ-FET USB Power
      2. 2.3.2 BoosterPack Plug-in Module and External Power Supply
      3. 2.3.3 Super Cap (C1)
        1. 2.3.3.1 Charging the Super Cap
        2. 2.3.3.2 Using the Super Cap
        3. 2.3.3.3 Disabling the Super Cap
    4. 2.4 Measure MSP430 Current Draw
    5. 2.5 Clocking
    6. 2.6 Using the eZ-FET Debug Probe With a Different Target
    7. 2.7 BoosterPack Plug-in Module Pinout
    8. 2.8 Design Files
      1. 2.8.1 Hardware
      2. 2.8.2 Software
    9. 2.9 Hardware Change Log
  5. 3Software Examples
    1. 3.1 Out-of-Box Software Example
      1. 3.1.1 Source File Structure
      2. 3.1.2 Out-of-Box Demo GUI
      3. 3.1.3 Power Up and Idle
      4. 3.1.4 Live Temperature Mode
      5. 3.1.5 FRAM Log Mode
      6. 3.1.6 SD Card Log Mode
    2. 3.2 Blink LED Example
      1. 3.2.1 Source File Structure
    3. 3.3 BOOSTXL-AUDIO Audio Record and Playback Example
      1. 3.3.1 Source File Structure
      2. 3.3.2 Operation
    4. 3.4 Filtering and Signal Processing With LEA Reference Design Example
      1. 3.4.1 Source File Structure
      2. 3.4.2 Operation
    5. 3.5 Emulating EEPROM Reference Design Example
      1. 3.5.1 Source File Structure
      2. 3.5.2 Operation
  6. 4Resources
    1. 4.1 Integrated Development Environments
      1. 4.1.1 TI Cloud Development Tools
        1. 4.1.1.1 TI Resource Explorer Cloud
        2. 4.1.1.2 Code Composer Studio Cloud
      2. 4.1.2 Code Composer Studio™ IDE
      3. 4.1.3 IAR Embedded Workbench for MSP430
    2. 4.2 LaunchPad Websites
    3. 4.3 MSPWare and TI Resource Explorer
    4. 4.4 FRAM Utilities
      1. 4.4.1 Compute Through Power Loss (CTPL)
    5. 4.5 MSP430FR5994 MCU
      1. 4.5.1 Device Documentation
      2. 4.5.2 MSP430FR5994 Code Examples
      3. 4.5.3 MSP430 Application Notes and TI Reference Designs
    6. 4.6 Community Resources
      1. 4.6.1 TI E2E Support Forums
      2. 4.6.2 Community at Large
  7. 5FAQ
  8. 6Schematics
  9. 7Revision History

Measure MSP430 Current Draw

To measure the current draw of the MSP430FR5994 using a multimeter, use the 3V3 jumper on the J101 jumper isolation block. The current measured includes the target device and any current drawn through the BoosterPack plug-in module headers.

To measure ultra-low power, follow these steps:

  1. Remove the 3V3 jumper in the J101 isolation block, and attach an ammeter across this jumper.
  2. Consider the effect that the backchannel UART and any circuitry attached to the MSP430FR5994 may have on current draw. Consider disconnecting these at the isolation jumper block, or at least consider their current sinking and sourcing capability in the final measurement.
  3. Make sure there are no floating inputs or outputs (I/Os) on the MSP430FR5994. These cause unnecessary extra current draw. Every I/O should either be driven out or, if it is an input, should be pulled or driven to a high or low level.
  4. Begin target execution.
  5. Measure the current. Keep in mind that if the current levels are fluctuating, it may be difficult to get a stable measurement. It is easier to measure quiescent states.

Alternatively, EnergyTrace++ technology can be used to measure the same current, and see energy profiles through integrated GUI in CCS and IAR. EnergyTrace allows you to compare various current profiles and better optimize the energy performance.