SLAU739 October   2017

 

  1.   MSP430FR2433 LaunchPad™ Development Kit (MSP‑EXP430FR2433)
    1.     Trademarks
    2. 1 Getting Started
      1. 1.1 Introduction
      2. 1.2 Key Features
      3. 1.3 What's Included
        1. 1.3.1 Kit Contents
        2. 1.3.2 Software Examples
      4. 1.4 First Steps: Out-of-Box Experience
        1. 1.4.1 Connecting to the Computer
        2. 1.4.2 Running the Out-of-Box Demo
      5. 1.5 Next Steps: Looking Into the Provided Code
    3. 2 Hardware
      1. 2.1 Block Diagram
      2. 2.2 Hardware Features
        1. 2.2.1 MSP430FR2433 MCU
        2. 2.2.2 eZ-FET Onboard Debug Probe With EnergyTrace Technology
        3. 2.2.3 Debug Probe Connection: Isolation Jumper Block
        4. 2.2.4 Application (or Backchannel) UART
        5. 2.2.5 Optional Features
          1. 2.2.5.1 Supercapacitor
      3. 2.3 Power
        1. 2.3.1 eZ-FET USB Power
        2. 2.3.2 BoosterPack and External Power Supply
        3. 2.3.3 Supercap (C6)
          1. 2.3.3.1 Charging the Supercap
          2. 2.3.3.2 Using the Supercap
          3. 2.3.3.3 Disabling the Supercap
      4. 2.4 Measure Current Draw of the MSP430 MCU
      5. 2.5 Clocking
      6. 2.6 Using the eZ-FET Debug Probe With a Different Target
      7. 2.7 BoosterPack Pinout
      8. 2.8 Design Files
        1. 2.8.1 Hardware
        2. 2.8.2 Software
      9. 2.9 Hardware Change log
    4. 3 Software Examples
      1. 3.1 Out-of-Box Software Example
        1. 3.1.1 Source File Structure
        2. 3.1.2 Overview
        3. 3.1.3 FRAM Data Logging Mode
        4. 3.1.4 Live Temperature Mode
      2. 3.2 Blink LED Example
        1. 3.2.1 Source File Structure
    5. 4 Resources
      1. 4.1 Integrated Development Environments
        1. 4.1.1 TI Cloud Development Tools
          1. 4.1.1.1 TI Resource Explorer Cloud
          2. 4.1.1.2 Code Composer Studio Cloud
        2. 4.1.2 Code Composer Studio IDE
        3. 4.1.3 IAR Embedded Workbench for Texas Instruments 430
      2. 4.2 LaunchPad Websites
      3. 4.3 MSPWare and TI Resource Explorer
      4. 4.4 FRAM Utilities
        1. 4.4.1 Compute Through Power Loss (CTPL)
        2. 4.4.2 Nonvolatile Storage (NVS)
      5. 4.5 MSP430FR2433 MCU
        1. 4.5.1 Device Documentation
        2. 4.5.2 MSP430FR2433 Code Examples
        3. 4.5.3 MSP430 Application Notes and TI Designs
      6. 4.6 Community Resources
        1. 4.6.1 TI E2E Community
        2. 4.6.2 Community at Large
    6. 5 FAQ
    7. 6 Schematics

Charging the Supercap

The supercapacitor can be charged when the EVM is plugged into the PC or when the board is externally powered. During charging, set J4 to the “Charge” setting, this adds in a current limiting resistor for charging.

To charge the supercap, power must be coming from the eZ-FET debug probe, external power through J5, or a BoosterPack module powering through J1. Allow two to three minutes for the supercap to charge (time may vary depending on initial charge of the supercap and your power source) to full VCC.