SLAU893B October   2023  – July 2024 MSPM0C1103 , MSPM0C1103-Q1 , MSPM0C1104 , MSPM0C1104-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation
    5.     Support Resources
    6.     Trademarks
  3. Architecture
    1. 1.1 Architecture Overview
    2. 1.2 Bus Organization
    3. 1.3 Platform Memory Map
      1. 1.3.1 Code Region
      2. 1.3.2 SRAM Region
      3. 1.3.3 Peripheral Region
      4. 1.3.4 Subsystem Region
      5. 1.3.5 System PPB Region
    4. 1.4 Boot Configuration
      1. 1.4.1 Configuration Memory (NONMAIN)
        1. 1.4.1.1 CRC-Backed Configuration Data
        2. 1.4.1.2 16-bit Pattern Match for Critical Fields
      2. 1.4.2 Boot Configuration Routine (BCR)
        1. 1.4.2.1 Serial Wire Debug Related Policies
          1. 1.4.2.1.1 SWD Security Level 0
          2. 1.4.2.1.2 SWD Security Level 1
          3. 1.4.2.1.3 SWD Security Level 2
        2. 1.4.2.2 SWD Factory Reset Commands
        3. 1.4.2.3 Flash Memory Protection and Integrity Related Policies
          1. 1.4.2.3.1 Locking the Application (MAIN) Flash Memory
          2. 1.4.2.3.2 Locking the Configuration (NONMAIN) Flash Memory
          3. 1.4.2.3.3 Static Write Protection NONMAIN Fields
    5. 1.5 NONMAIN_C1103_C1104 Registers
    6. 1.6 Factory Constants
      1. 1.6.1 FACTORYREGION Registers
  4. PMCU
    1. 2.1 PMCU Overview
      1. 2.1.1 Power Domains
      2. 2.1.2 Operating Modes
        1. 2.1.2.1 RUN Mode
        2. 2.1.2.2 SLEEP Mode
        3. 2.1.2.3 STOP Mode
        4. 2.1.2.4 STANDBY Mode
        5. 2.1.2.5 SHUTDOWN Mode
        6. 2.1.2.6 Supported Functionality by Operating Mode
        7. 2.1.2.7 Suspended Low-Power Mode Operation
    2. 2.2 Power Management (PMU)
      1. 2.2.1 Power Supply
      2. 2.2.2 Core Regulator
      3. 2.2.3 Supply Supervisors
        1. 2.2.3.1 Power-on Reset (POR) Supervisor
        2. 2.2.3.2 Brownout Reset (BOR) Supervisor
        3. 2.2.3.3 POR and BOR Behavior During Supply Changes
      4. 2.2.4 Bandgap Reference
      5. 2.2.5 Temperature Sensor
      6. 2.2.6 Peripheral Power Enable Control
        1. 2.2.6.1 Automatic Peripheral Disable in Low Power Modes
    3. 2.3 Clock Module (CKM)
      1. 2.3.1 Oscillators
        1. 2.3.1.1 Internal Low-Frequency Oscillator (LFOSC)
        2. 2.3.1.2 Internal System Oscillator (SYSOSC)
          1. 2.3.1.2.1 SYSOSC Frequency Correction Loop
            1. 2.3.1.2.1.1 SYSOSC FCL in Internal Resistor Mode
          2. 2.3.1.2.2 Disabling SYSOSC
        3. 2.3.1.3 LFCLK_IN (Digital Clock)
        4. 2.3.1.4 HFCLK_IN (Digital clock)
      2. 2.3.2 Clocks
        1. 2.3.2.1 MCLK (Main Clock) Tree
        2. 2.3.2.2 CPUCLK (Processor Clock)
        3. 2.3.2.3 ULPCLK (Low-Power Clock)
        4. 2.3.2.4 MFCLK (Middle Frequency Clock)
        5. 2.3.2.5 LFCLK (Low-Frequency Clock)
        6. 2.3.2.6 ADCCLK (ADC Sample Period Clock)
        7. 2.3.2.7 External Clock Output (CLK_OUT)
        8. 2.3.2.8 Direct Clock Connections for Infrastructure
      3. 2.3.3 Clock Tree
        1. 2.3.3.1 Peripheral Clock Source Selection
      4. 2.3.4 Clock Monitors
        1. 2.3.4.1 MCLK Monitor
        2. 2.3.4.2 Startup Monitors
          1. 2.3.4.2.1 LFOSC Startup Monitor
      5. 2.3.5 Frequency Clock Counter (FCC)
        1. 2.3.5.1 Using the FCC
        2. 2.3.5.2 FCC Frequency Computation and Accuracy
    4. 2.4 System Controller (SYSCTL)
      1. 2.4.1  Resets and Device Initialization
        1. 2.4.1.1 Reset Levels
          1. 2.4.1.1.1 Power-on Reset (POR) Reset Level
          2. 2.4.1.1.2 Brownout Reset (BOR) Reset Level
          3. 2.4.1.1.3 Boot Reset (BOOTRST) Reset Level
          4. 2.4.1.1.4 System Reset (SYSRST) Reset Level
          5. 2.4.1.1.5 CPU-only Reset (CPURST) Reset Level
        2. 2.4.1.2 Initial Conditions After POR
        3. 2.4.1.3 NRST Pin
        4. 2.4.1.4 SWD Pins
        5. 2.4.1.5 Generating Resets in Software
        6. 2.4.1.6 Reset Cause
        7. 2.4.1.7 Peripheral Reset Control
        8. 2.4.1.8 Boot Fail Handling
      2. 2.4.2  Operating Mode Selection
      3. 2.4.3  Asynchronous Fast Clock Requests
      4. 2.4.4  SRAM Write Protection
      5. 2.4.5  Flash Wait States
      6. 2.4.6  Shutdown Mode Handling
      7. 2.4.7  Configuration Lockout
      8. 2.4.8  System Status
      9. 2.4.9  Error Handling
      10. 2.4.10 SYSCTL Events
        1. 2.4.10.1 CPU Interrupt Event (CPU_INT)
    5. 2.5 Quick Start Reference
      1. 2.5.1 Default Device Configuration
      2. 2.5.2 Leveraging MFCLK
      3. 2.5.3 Optimizing Power Consumption in STOP Mode
      4. 2.5.4 Optimizing Power Consumption in STANDBY Mode
      5. 2.5.5 Optimizing for Lowest Wakeup Latency
      6. 2.5.6 Optimizing for Lowest Peak Current in RUN/SLEEP Mode
    6. 2.6 SYSCTL_C1103_C1104 Registers
  5. CPU
    1. 3.1 Overview
    2. 3.2 Arm Cortex-M0+ CPU
      1. 3.2.1 CPU Register File
      2. 3.2.2 Stack Behavior
      3. 3.2.3 Execution Modes and Privilege Levels
      4. 3.2.4 Address Space and Supported Data Sizes
    3. 3.3 Interrupts and Exceptions
      1. 3.3.1 Peripheral Interrupts (IRQs)
        1. 3.3.1.1 Nested Vectored Interrupt Controller (NVIC)
        2. 3.3.1.2 Interrupt Groups
        3. 3.3.1.3 Wake Up Controller (WUC)
      2. 3.3.2 Interrupt and Exception Table
      3. 3.3.3 Processor Lockup Scenario
    4. 3.4 CPU Peripherals
      1. 3.4.1 System Control Block (SCB)
    5. 3.5 Read-Only Memory (ROM)
    6. 3.6 CPUSS Registers
    7. 3.7 WUC Registers
  6. DMA
    1. 4.1 DMA Overview
    2. 4.2 DMA Operation
      1. 4.2.1  Addressing Modes
      2. 4.2.2  Channel Types
      3. 4.2.3  Transfer Modes
        1. 4.2.3.1 Single Transfer
        2. 4.2.3.2 Block Transfer
        3. 4.2.3.3 Repeated Single Transfer
        4. 4.2.3.4 Repeated Block Transfer
        5. 4.2.3.5 Stride Mode
      4. 4.2.4  Extended Modes
        1. 4.2.4.1 Fill Mode
        2. 4.2.4.2 Table Mode
      5. 4.2.5  Initiating DMA Transfers
      6. 4.2.6  Stopping DMA Transfers
      7. 4.2.7  Channel Priorities
      8. 4.2.8  Burst Block Mode
      9. 4.2.9  Using DMA with System Interrupts
      10. 4.2.10 DMA Controller Interrupts
      11. 4.2.11 DMA Trigger Event Status
      12. 4.2.12 DMA Operating Mode Support
        1. 4.2.12.1 Transfer in RUN Mode
        2. 4.2.12.2 Transfer in SLEEP Mode
        3. 4.2.12.3 Transfer in STOP Mode
        4. 4.2.12.4 Transfers in STANDBY Mode
      13. 4.2.13 DMA Address and Data Errors
      14. 4.2.14 Interrupt and Event Support
    3. 4.3 DMA Registers
  7. NVM (Flash)
    1. 5.1 NVM Overview
      1. 5.1.1 Key Features
      2. 5.1.2 System Components
      3. 5.1.3 Terminology
    2. 5.2 Flash Memory Bank Organization
      1. 5.2.1 Banks
      2. 5.2.2 Flash Memory Regions
      3. 5.2.3 Addressing
        1. 5.2.3.1 Flash Memory Map
      4. 5.2.4 Memory Organization Examples
    3. 5.3 Flash Controller
      1. 5.3.1 Overview of Flash Controller Commands
      2. 5.3.2 NOOP Command
      3. 5.3.3 PROGRAM Command
        1. 5.3.3.1 Program Bit Masking Behavior
        2. 5.3.3.2 Programming Less Than One Flash Word
        3. 5.3.3.3 Target Data Alignment (Devices with Single Flash Word Programming Only)
        4. 5.3.3.4 Target Data Alignment (Devices With Multiword Programming)
        5. 5.3.3.5 Executing a PROGRAM Operation
      4. 5.3.4 ERASE Command
        1. 5.3.4.1 Erase Sector Masking Behavior
        2. 5.3.4.2 Executing an ERASE Operation
      5. 5.3.5 READVERIFY Command
        1. 5.3.5.1 Executing a READVERIFY Operation
      6. 5.3.6 BLANKVERIFY Command
        1. 5.3.6.1 Executing a BLANKVERIFY Operation
      7. 5.3.7 Command Diagnostics
        1. 5.3.7.1 Command Status
        2. 5.3.7.2 Address Translation
        3. 5.3.7.3 Pulse Counts
      8. 5.3.8 Overriding the System Address With a Bank ID, Region ID, and Bank Address
      9. 5.3.9 FLASHCTL Events
        1. 5.3.9.1 CPU Interrupt Event Publisher
    4. 5.4 Write Protection
      1. 5.4.1 Write Protection Resolution
      2. 5.4.2 Static Write Protection
      3. 5.4.3 Dynamic Write Protection
        1. 5.4.3.1 Configuring Protection for the MAIN Region
        2. 5.4.3.2 Configuring Protection for the NONMAIN Region
    5. 5.5 Read Interface
      1. 5.5.1 Bank Address Swapping
    6. 5.6 FLASHCTL Registers
  8. Events
    1. 6.1 Events Overview
      1. 6.1.1 Event Publisher
      2. 6.1.2 Event Subscriber
      3. 6.1.3 Event Fabric Routing
        1. 6.1.3.1 CPU Interrupt Event Route (CPU_INT)
        2. 6.1.3.2 DMA Trigger Event Route (DMA_TRIGx)
        3. 6.1.3.3 Generic Event Route (GEN_EVENTx)
      4. 6.1.4 Event Routing Map
      5. 6.1.5 Event Propagation Latency
    2. 6.2 Events Operation
      1. 6.2.1 CPU Interrupt
      2. 6.2.2 DMA Trigger
      3. 6.2.3 Peripheral to Peripheral Event
      4. 6.2.4 Extended Module Description Register
      5. 6.2.5 Using Event Registers
        1. 6.2.5.1 Event Registers
        2. 6.2.5.2 Configuring Events
        3. 6.2.5.3 Responding to CPU Interrupts in Application Software
        4. 6.2.5.4 Hardware Event Handling
  9. IOMUX
    1. 7.1 IOMUX Overview
      1. 7.1.1 IO Types and Analog Sharing
    2. 7.2 IOMUX Operation
      1. 7.2.1 Peripheral Function (PF) Assignment
      2. 7.2.2 Logic High to Hi-Z Conversion
      3. 7.2.3 Logic Inversion
      4. 7.2.4 SHUTDOWN Mode Wakeup Logic
      5. 7.2.5 Pullup/Pulldown Resistors
      6. 7.2.6 Drive Strength Control
      7. 7.2.7 Hysteresis and Logic Level Control
    3. 7.3 IOMUX (PINCMx) Register Format
    4. 7.4 IOMUX Registers
  10. GPIO
    1. 8.1 GPIO Overview
    2. 8.2 GPIO Operation
      1. 8.2.1 GPIO Ports
      2. 8.2.2 GPIO Read/Write Interface
      3. 8.2.3 GPIO Input Glitch Filtering and Synchronization
      4. 8.2.4 GPIO Fast Wake
      5. 8.2.5 GPIO DMA Interface
      6. 8.2.6 Event Publishers and Subscribers
    3. 8.3 GPIO Registers
  11. ADC
    1. 9.1 ADC Overview
    2. 9.2 ADC Operation
      1. 9.2.1  ADC Core
      2. 9.2.2  Voltage Reference Options
      3. 9.2.3  Generic Resolution Modes
      4. 9.2.4  Hardware Averaging
      5. 9.2.5  ADC Clocking
      6. 9.2.6  Common ADC Use Cases
      7. 9.2.7  Power Down Behavior
      8. 9.2.8  Sampling Trigger Sources and Sampling Modes
        1. 9.2.8.1 AUTO Sampling Mode
        2. 9.2.8.2 MANUAL Sampling Mode
      9. 9.2.9  Sampling Period
      10. 9.2.10 Conversion Modes
      11. 9.2.11 Data Format
      12. 9.2.12 Advanced Features
        1. 9.2.12.1 Window Comparator
        2. 9.2.12.2 DMA and FIFO Operation
        3. 9.2.12.3 Analog Peripheral Interconnection
      13. 9.2.13 Status Register
      14. 9.2.14 ADC Events
        1. 9.2.14.1 CPU Interrupt Event Publisher (CPU_INT)
        2. 9.2.14.2 Generic Event Publisher (GEN_EVENT)
        3. 9.2.14.3 DMA Trigger Event Publisher (DMA_TRIG)
        4. 9.2.14.4 Generic Event Subscriber (FSUB_0)
    3. 9.3 ADC0 Registers
  12. 10VREF
    1. 10.1 VREF Overview
    2. 10.2 VREF Operation
      1. 10.2.1 Internal Reference Generation
    3. 10.3 VREF Registers
  13. 11UART
    1. 11.1 UART Overview
      1. 11.1.1 Purpose of the Peripheral
      2. 11.1.2 Features
      3. 11.1.3 Functional Block Diagram
    2. 11.2 UART Operation
      1. 11.2.1 Clock Control
      2. 11.2.2 Signal Descriptions
      3. 11.2.3 General Architecture and Protocol
        1. 11.2.3.1  Transmit Receive Logic
        2. 11.2.3.2  Bit Sampling
        3. 11.2.3.3  Majority Voting Feature
        4. 11.2.3.4  Baud Rate Generation
        5. 11.2.3.5  Data Transmission
        6. 11.2.3.6  Error and Status
        7. 11.2.3.7  Local Interconnect Network (LIN) Support
          1. 11.2.3.7.1 LIN Responder Transmission Delay
        8. 11.2.3.8  Flow Control
        9. 11.2.3.9  Idle-Line Multiprocessor
        10. 11.2.3.10 9-Bit UART Mode
        11. 11.2.3.11 RS485 Support
        12. 11.2.3.12 DALI Protocol
        13. 11.2.3.13 Manchester Encoding and Decoding
        14. 11.2.3.14 IrDA Encoding and Decoding
        15. 11.2.3.15 ISO7816 Smart Card Support
        16. 11.2.3.16 Address Detection
        17. 11.2.3.17 FIFO Operation
        18. 11.2.3.18 Loopback Operation
        19. 11.2.3.19 Glitch Suppression
      4. 11.2.4 Low Power Operation
      5. 11.2.5 Reset Considerations
      6. 11.2.6 Initialization
      7. 11.2.7 Interrupt and Events Support
        1. 11.2.7.1 CPU Interrupt Event Publisher (CPU_INT)
        2. 11.2.7.2 DMA Trigger Publisher (DMA_TRIG_RX, DMA_TRIG_TX)
      8. 11.2.8 Emulation Modes
    3. 11.3 UART0 Registers
  14. 12SPI
    1. 12.1 SPI Overview
      1. 12.1.1 Purpose of the Peripheral
      2. 12.1.2 Features
      3. 12.1.3 Functional Block Diagram
      4. 12.1.4 External Connections and Signal Descriptions
    2. 12.2 SPI Operation
      1. 12.2.1 Clock Control
      2. 12.2.2 General Architecture
        1. 12.2.2.1 Chip Select and Command Handling
          1. 12.2.2.1.1 Chip Select Control
          2. 12.2.2.1.2 Command Data Control
        2. 12.2.2.2 Data Format
        3. 12.2.2.3 Delayed data sampling
        4. 12.2.2.4 Clock Generation
        5. 12.2.2.5 FIFO Operation
        6. 12.2.2.6 Loopback mode
        7. 12.2.2.7 DMA Operation
        8. 12.2.2.8 Repeat Transfer mode
        9. 12.2.2.9 Low Power Mode
      3. 12.2.3 Protocol Descriptions
        1. 12.2.3.1 Motorola SPI Frame Format
        2. 12.2.3.2 Texas Instruments Synchronous Serial Frame Format
      4. 12.2.4 Reset Considerations
      5. 12.2.5 Initialization
      6. 12.2.6 Interrupt and Events Support
        1. 12.2.6.1 CPU Interrupt Event Publisher (CPU_INT)
        2. 12.2.6.2 DMA Trigger Publisher (DMA_TRIG_RX, DMA_TRIG_TX)
      7. 12.2.7 Emulation Modes
    3. 12.3 SPI Registers
  15. 13I2C
    1. 13.1 I2C Overview
      1. 13.1.1 Purpose of the Peripheral
      2. 13.1.2 Features
      3. 13.1.3 Functional Block Diagram
      4. 13.1.4 Environment and External Connections
    2. 13.2 I2C Operation
      1. 13.2.1 Clock Control
        1. 13.2.1.1 Clock Select and I2C Speed
        2. 13.2.1.2 Clock Startup
      2. 13.2.2 Signal Descriptions
      3. 13.2.3 General Architecture
        1. 13.2.3.1  I2C Bus Functional Overview
        2. 13.2.3.2  START and STOP Conditions
        3. 13.2.3.3  Data Format with 7-Bit Address
        4. 13.2.3.4  Acknowledge
        5. 13.2.3.5  Repeated Start
        6. 13.2.3.6  SCL Clock Low Timeout
        7. 13.2.3.7  Clock Stretching
        8. 13.2.3.8  Dual Address
        9. 13.2.3.9  Arbitration
        10. 13.2.3.10 Multiple Controller Mode
        11. 13.2.3.11 Glitch Suppression
        12. 13.2.3.12 FIFO operation
          1. 13.2.3.12.1 Flushing Stale Tx Data in Target Mode
        13. 13.2.3.13 Loopback mode
        14. 13.2.3.14 Burst Mode
        15. 13.2.3.15 DMA Operation
        16. 13.2.3.16 Low-Power Operation
      4. 13.2.4 Protocol Descriptions
        1. 13.2.4.1 I2C Controller Mode
          1. 13.2.4.1.1 Controller Configuration
          2. 13.2.4.1.2 Controller Mode Operation
          3. 13.2.4.1.3 Read On TX Empty
        2. 13.2.4.2 I2C Target Mode
          1. 13.2.4.2.1 Target Mode Operation
      5. 13.2.5 Reset Considerations
      6. 13.2.6 Initialization
      7. 13.2.7 Interrupt and Events Support
        1. 13.2.7.1 CPU Interrupt Event Publisher (CPU_INT)
        2. 13.2.7.2 DMA Trigger Publisher (DMA_TRIG1, DMA_TRIG0)
      8. 13.2.8 Emulation Modes
    3. 13.3 I2C Registers
  16. 14CRC
    1. 14.1 CRC Overview
      1. 14.1.1 CRC16-CCITT
    2. 14.2 CRC Operation
      1. 14.2.1 CRC Generator Implementation
      2. 14.2.2 Configuration
        1. 14.2.2.1 Bit Order
        2. 14.2.2.2 Byte Swap
        3. 14.2.2.3 Byte Order
        4. 14.2.2.4 CRC C Library Compatibility
    3. 14.3 CRC Registers
  17. 15Timers (TIMx)
    1. 15.1 TIMx Overview
      1. 15.1.1 TIMG Overview
        1. 15.1.1.1 TIMG Features
        2. 15.1.1.2 Functional Block Diagram
      2. 15.1.2 TIMA Overview
        1. 15.1.2.1 TIMA Features
        2. 15.1.2.2 Functional Block Diagram
      3. 15.1.3 TIMx Instance Configuration
    2. 15.2 TIMx Operation
      1. 15.2.1  Timer Counter
        1. 15.2.1.1 Clock Source Select and Prescaler
          1. 15.2.1.1.1 Internal Clock and Prescaler
          2. 15.2.1.1.2 External Signal Trigger
        2. 15.2.1.2 Repeat Counter (TIMA only)
      2. 15.2.2  Counting Mode Control
        1. 15.2.2.1 One-shot and Periodic Modes
        2. 15.2.2.2 Down Counting Mode
        3. 15.2.2.3 Up/Down Counting Mode
        4. 15.2.2.4 Up Counting Mode
        5. 15.2.2.5 Phase Load (TIMA only)
      3. 15.2.3  Capture/Compare Module
        1. 15.2.3.1 Capture Mode
          1. 15.2.3.1.1 Input Selection, Counter Conditions, and Inversion
            1. 15.2.3.1.1.1 CCP Input Edge Synchronization
            2. 15.2.3.1.1.2 CCP Input Pulse Conditions
            3. 15.2.3.1.1.3 Counter Control Operation
            4. 15.2.3.1.1.4 CCP Input Filtering
            5. 15.2.3.1.1.5 Input Selection
          2. 15.2.3.1.2 Use Cases
            1. 15.2.3.1.2.1 Edge Time Capture
            2. 15.2.3.1.2.2 Period Capture
            3. 15.2.3.1.2.3 Pulse Width Capture
            4. 15.2.3.1.2.4 Combined Pulse Width and Period Time
          3. 15.2.3.1.3 QEI Mode (TIMG with QEI support only)
            1. 15.2.3.1.3.1 QEI With 2-Signal
            2. 15.2.3.1.3.2 QEI With Index Input
            3. 15.2.3.1.3.3 QEI Error Detection
          4. 15.2.3.1.4 Hall Input Mode (TIMG with QEI support only)
        2. 15.2.3.2 Compare Mode
          1. 15.2.3.2.1 Edge Count
      4. 15.2.4  Shadow Load and Shadow Compare
        1. 15.2.4.1 Shadow Load (TIMG4-7, TIMA only)
        2. 15.2.4.2 Shadow Compare (TIMG4-7, TIMG12-13, TIMA only)
      5. 15.2.5  Output Generator
        1. 15.2.5.1 Configuration
        2. 15.2.5.2 Use Cases
          1. 15.2.5.2.1 Edge-Aligned PWM
          2. 15.2.5.2.2 Center-Aligned PWM
          3. 15.2.5.2.3 Asymmetric PWM (TIMA only)
          4. 15.2.5.2.4 Complementary PWM With Deadband Insertion (TIMA only)
        3. 15.2.5.3 Forced Output
      6. 15.2.6  Fault Handler (TIMA only)
        1. 15.2.6.1 Fault Input Conditioning
        2. 15.2.6.2 Fault Input Sources
        3. 15.2.6.3 Counter Behavior With Fault Conditions
        4. 15.2.6.4 Output Behavior With Fault Conditions
      7. 15.2.7  Synchronization With Cross Trigger
        1. 15.2.7.1 Main Timer Cross Trigger Configuration
        2. 15.2.7.2 Secondary Timer Cross Trigger Configuration
      8. 15.2.8  Low Power Operation
      9. 15.2.9  Interrupt and Event Support
        1. 15.2.9.1 CPU Interrupt Event Publisher (CPU_INT)
        2. 15.2.9.2 Generic Event Publisher and Subscriber (GEN_EVENT0 and GEN_EVENT1)
        3. 15.2.9.3 Generic Subscriber Event Example (COMP to TIMx)
      10. 15.2.10 Debug Handler (TIMA Only)
    3. 15.3 TIMx Registers
  18. 16WWDT
    1. 16.1 WWDT Overview
      1. 16.1.1 Watchdog Mode
      2. 16.1.2 Interval Timer Mode
    2. 16.2 WWDT Operation
      1. 16.2.1 Mode Selection
      2. 16.2.2 Clock Configuration
      3. 16.2.3 Low-Power Mode Behavior
      4. 16.2.4 Debug Behavior
      5. 16.2.5 WWDT Events
        1. 16.2.5.1 CPU Interrupt Event Publisher (CPU_INT)
    3. 16.3 WWDT Registers
  19. 17Debug
    1. 17.1 Overview
      1. 17.1.1 Debug Interconnect
      2. 17.1.2 Physical Interface
      3. 17.1.3 Debug Access Ports
    2. 17.2 Debug Features
      1. 17.2.1 Processor Debug
        1. 17.2.1.1 Breakpoint Unit (BPU)
        2. 17.2.1.2 Data Watchpoint and Trace Unit (DWT)
      2. 17.2.2 Peripheral Debug
      3. 17.2.3 EnergyTrace Technology
    3. 17.3 Behavior in Low Power Modes
    4. 17.4 Restricting Debug Access
    5. 17.5 Mailbox (DSSM)
      1. 17.5.1 DSSM Events
        1. 17.5.1.1 CPU Interrupt Event (CPU_INT)
      2. 17.5.2 DEBUGSS Registers
  20. 18Revision History

DMA and FIFO Operation

The ADC has a dedicated interface for communicating to and from the DMA. This interface is useful to offload work from the CPU by using the DMA to store ADC results to memory automatically. Figure 9-4 shows the signals that make up this interface:

MSPM0C1104 Internal ADC-DMA InterfaceFigure 9-4 Internal ADC-DMA Interface
Note: The “DMA trigger count” signal indicates the number of samples that can be transferred by the DMA upon one trigger request. The “DONE status” signal is used by the ADC to generate the DMA DONE interrupt and it indicates if the DMA data transfer of programmed block size is completed.

The DMAEN bit in the CTL2 register is used to enable the DMA for ADC data transfer. The DMAEN bit is cleared by ADC hardware when the DMA “DONE status” signal is asserted. Software is expected to re-enable the DMA using DMAEN to arm the ADC to generate the next DMA trigger.

The ADC also incorporates an optional First-In-First-Out buffer to provide a way for ADC results to be stored for future use, such as transferring to memory by the DMA. Either the CPU or the DMA can be used to move data from the ADC regardless of whether the FIFO is enabled or disabled. The memory result flags in the RIS register of the third event publisher serve as the FIFO threshold and can be unmasked to generate the DMA trigger.

The following sections explain the details of using the ADC+DMA/CPU in various conversion modes and with the FIFO enabled or disabled

ADC-DMA/CPU Operation in Non-FIFO Mode (FIFOEN=0)

ADC-DMA/CPU Operation in Non-FIFO Mode (FIFOEN=0)

  • Single Conversion and Repeat Single Conversion
    • Configure STARTADD bits to select the desired MEMCTLx register
      • MEMCTLx is correlated to MEMRESx
      • MEMRESx is correlated to MEMRESIFGx
    • Configure MEMCTL CHANSEL bits to select the desired ADC channel
    • Conversion data is available in MEMRESx
    • MEMRESIFGx can be set to generate a CPU interrupt or the DMA trigger
    • SAMPCNT must be programmed to 1 by SW for DMA operation
    • The conversion overflow flag OVIFG is set when the ADC updates MEMRESx before the previous sample is read by the CPU or DMA
    • The conversion underflow flag UVIFG is set when the CPU or DMA reads the MEMRESx register before the next conversion result is available
  • Sequence Conversion and Repeat Sequence Conversion
    • Configure STARTADD bits to select the first MEMCTL in the sequence
    • Configure ENDADD bits to select the last MEMCTL in the sequence
      • MEMCTLx is correlated to MEMRESx
      • MEMRESx is correlated to MEMRESIFGx
    • Configure each MEMCTLx CHANSEL bits to select the desired ADC channels
    • Conversion data is available in MEMRESx
    • MEMRESIFGx can be set to generate a CPU interrupt or the DMA trigger
    • SAMPCNT must be programmed by SW to a suitable value based on threshold setting by SW for DMA operation
    • The conversion overflow flag OVIFG is set when the ADC updates MEMRESx before the previous sample is read by the CPU or DMA
    • The conversion underflow flag UVIFG is set when the CPU or DMA reads the MEMRESx register before the next conversion result is available
Note: For DMA based operation, the MEMCTL start address should be smaller than the end address for single sequence conversion as DMA source does not roll back. Repeat sequence conversion mode does not support DMA based data transfer because the DMA does not support circular addressing mode.

ADC-DMA/CPU Operation in FIFO Mode (FIFOEN=1)

  • Single Conversion and Repeat Single Conversion
    • Configure STARTADD bits to select the desired MEMCTLx register
      • MEMCTLx is NOT correlated to MEMRESx
      • MEMRESx is correlated to MEMRESIFGx
    • Configure MEMCTL CHANSEL bits to select the desired ADC channel
    • Conversion data is loaded sequentially into MEMRES0,1,2,….N (organized as a FIFO)
    • The CPU or DMA must read ADC samples from the dedicated FIFODAT register and not from MEMRES registers directly
      • Data in the FIFO is always compacted with two samples and provided as 32-bit data upon a FIFODAT read by CPU or DMA
    • MEMRESIFGx can be used as a threshold condition to generate a CPU interrupt or DMA trigger
      • For full use of the FIFO, the last MEMRESIFG can be used
    • SAMPCNT must be programmed by SW to a suitable value based on threshold setting for DMA operation
    • The conversion overflow flag OVIFG is set when the ADC updates MEMRESx before the previous sample is read by the CPU or DMA
    • The conversion underflow flag UVIFG is set when the CPU or DMA reads the FIFODAT register before the conversion result is available in the MEMRESx registers.
Note: Single conversion mode with FIFO enabled is not recommended for CPU or DMA based operation. It will lead to underflow condition and unwanted 16-bit data will have to be discarded in software.
  • Sequence Conversion and Repeat Sequence Conversion
    • Configure STARTADD bits to select the first MEMCTL in the sequence
    • Configure ENDADD bits to select the last MEMCTL in the sequence
      • MEMCTLx is NOT correlated to MEMRESx
      • MEMRESx is correlated to MEMRESIFGx
    • Configure each MEMCTLx CHANSEL bits to select the desired ADC channels
    • Conversion data is loaded sequentially into MEMRES0,1,2,….N (organized as a FIFO)
    • The CPU or DMA must read ADC samples from the dedicated FIFODAT register and not from MEMRES registers directly
      • Data in the FIFO is always compacted with two samples and provided as 32-bit data upon a FIFODAT read by CPU or DMA
    • MEMRESIFGx can be used as a threshold condition to generate a CPU interrupt or DMA trigger
      • For full use of the FIFO, the last MEMRESIFG can be used
    • SAMPCNT must be programmed by SW to a suitable value based on threshold setting for DMA operation
    • The conversion overflow flag OVIFG is set when the ADC updates MEMRESx before the previous sample is read by the CPU or DMA
    • The conversion underflow flag UVIFG is set when the CPU or DMA reads the FIFODAT register before the conversion result is available in the MEMRESx registers
Note:
  • The data in FIFODAT register won't be cleared automatically after CPU or DMA reads. New conversion data overwrites the previous data in FIFODAT register.
  • To ensure synchronized reading of bytes from the 32-bit FIFO, which stores 16-bit samples, specific DMA triggers can be used. In particular, selecting MEMRES1 and MEMRES3 will synchronize the reading of bytes from the FIFO with the corresponding MEMRESx bytes.
  • If the ADC is disabled during either the repeat sequence mode or normal repeat mode, it's worth noting that an additional conversion may occur before the ADC completely stops.
Table 9-5 ADC-DMA/CPU Operation Summary Matrix
Conversion ModeFIFO Disabled (FIFOEN=0)
Samples not compacted
Read from MEMRESx registers directly
FIFO Enabled (FIFOEN=1)
Samples always compacted
Read from FIFODAT register only
CPU Read/WriteDMA Read/WriteCPU Read/WriteDMA Read/Write
SingleSupportedSupported
SAMPCNT=1
Sample in 16 bits
Not recommended
Underflow flag will set
Unwanted 16-bits should be ignored
Not recommended
Underflow flag will set
Unwanted 16-bits should be ignored
Repeat SingleSupportedSupported
SAMPCNT=1
Sample in 16 bits
Supported
MEMRESIFG=CPU interrupt
FIFODAT read in 32-bits
Supported
MEMRESIFG=DMA trigger
SAMPCNT=Samples in 32-bits
SequenceSupportedSupported
SAMPCNT=Sample in 16 bits
STARTADD<ENDADD
Supported
MEMRESIFG=CPU interrupt
FIFODAT read in 32-bits
Supported
MEMRESIFG=DMA trigger
SAMPCNT=Samples in 32-bits
Repeat SequenceSupportedNot SupportedSupported
MEMRESIFG=CPU interrupt
FIFODAT read in 32-bits
Supported
MEMRESIFG=DMA trigger
SAMPCNT=Samples in 32-bits