SLLA498A October   2020  – December 2024

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Solar String Inverters
    1. 2.1 Power Stages for DC/DC MPPT
    2. 2.2 Power Stages for Battery Port DC/DC
    3. 2.3 Power Stages for Single-Phase DC/AC
    4. 2.4 Power Stages for Three-Phase DC/AC
  6. 3Future Technology and Trends
  7. 4Summary
  8. 5References
  9. 6Revision History

Solar String Inverters

Figure 2-1 shows the typical architecture of a solar string inverter.

 Solar String Inverter Block
                Diagram Figure 2-1 Solar String Inverter Block Diagram

As Figure 2-1 illustrates, there are three major power blocks in the string inverter. The first stage is a uni-directional DC/DC converter stage that converts the variable string output to a stable high-voltage DC link suitable for the next stages, the second is a bidirectional DC/DC power stage the third a bidirectional DC/AC inverter stage. For single-phase systems the DC Bus voltage is typically 400VDC. For three-phase systems the DC-Bus voltage is around 800VDC or even higher up to 1500VDC. This first DC/DC stage is also able to perform the Maximum Power Point Tracking (MPPT) for a complete string. It simply searches for the maximum power by changing voltage and current across a complete string. This DC Bus voltage is then converted to an AC voltage at the grid voltage level by the DC/AC inverter power stage. In today’s systems, the AC/DC is built as bidirectional PFC/Inverter to allow the operation of the DC/DC power stage that connects to a battery energy storage system, and allows to charge and discharge the ESS in both directions.

A more detailed block diagram of Solar String inverter is available on TI's String inverter applications page.