SLLA535 December   2022 TLIN1431-Q1

 

  1. 1Introduction
    1.     Trademarks
  2. 2TLIN1431x-Q1 Hardware Component Functional Safety Capability
  3. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  4. 4TLIN1431x-Q1 Component Overview
    1. 4.1 Targeted Applications
    2. 4.2 Hardware Component Functional Safety Concept
    3. 4.3 Functional Safety Constraints and Assumptions
  5. 5Description of Hardware Component Parts
    1. 5.1 LIN Transceiver
    2. 5.2 Digital Core
    3. 5.3 Power Control IP
    4. 5.4 Digital Input/Output Pins and High-side Switch
  6. 6TLIN1431x-Q1 Management of Random Faults
    1. 6.1 Fault Reporting
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1 LIN Bus and Communication
        1. 6.3.1.1 SM-1: LIN TXD Pin Dominant State Timeout
        2. 6.3.1.2 SM-2: LIN Bus Stuck Dominant System Fault: False Wake Up Lockout
        3. 6.3.1.3 SM-3: LIN Bus Short Circuit Limiter
        4. 6.3.1.4 SM-20: LIN Internal pull-up to VSUP
        5. 6.3.1.5 SM-22: LIN Protocol
      2. 6.3.2 Voltage Rail Monitoring
        1. 6.3.2.1 SM-4: VCC and Transceiver Thermal Shutdown
        2. 6.3.2.2 SM-5: VCC Under-voltage
        3. 6.3.2.3 SM-6: VCC Over-voltage
        4. 6.3.2.4 SM-7: VCC Short to Ground
        5. 6.3.2.5 SM-8: VSUP Under-voltage
      3. 6.3.3 Processor Communication
        1. 6.3.3.1 SM-9 and SM-10: Watchdog
          1. 6.3.3.1.1 SM-9: Standby Mode Long Window Timeout Watchdog
          2. 6.3.3.1.2 SM-10: Normal Mode Watchdog
        2. 6.3.3.2 SM-11: SPI CRC
        3. 6.3.3.3 SM-12: SPI Communication Error; SPIERR
        4. 6.3.3.4 SM-13: Scratchpad Write/Read Register
        5. 6.3.3.5 SM-14: Sleep Wake Error Timer; tINACT_FS
      4. 6.3.4 Digital Input/Output Pins and High-side Switch
        1. 6.3.4.1 SM-15: CLK internal pull-up to VINT
        2. 6.3.4.2 SM-16: SDI internal pull-up to VINT
        3. 6.3.4.3 SM-17: nCS Internal pull-up to VINT
        4. 6.3.4.4 SM-18: DIV_ON Internal pull-down to GND
        5. 6.3.4.5 SM-19: TXD Internal pull-up to VINT
        6. 6.3.4.6 SM-21: nRST Internal pull-up to VINT
        7. 6.3.4.7 SM-23: HSS Over Current Detect
        8. 6.3.4.8 SM-24: HSS Open Load Detect
          1.        A Summary of Recommended Functional Safety Mechanism Usage
            1.         B Distributed Developments
              1.          B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
              2.          B.2 Activities Performed by Texas Instruments
              3.          B.3 Information Provided
                1.           C Revision History

SM-5: VCC Under-voltage

The VCC pin is the current limited regulated output based supporting an accuracy of ±2.5%. In the event that the regulator drops out of regulation, the output tracks the input minus a drop based on the load current. When the input voltage drops below the UVSUP threshold, the regulator turns off until the input voltage returns above the UVSUPR level. The device uses the voltage regulator during Init mode to determine which function the WKRQ/INH, and what the IO voltage is when the 5V LDO is used. The device monitors VCC for under-voltage. The device control method and whether fail-safe mode is enabled determine the behavior of the of the device for these events. Fail-safe mode is always active when the device is in pin control. In SPI control, the state diagram shows two paths: fail-safe mode enabled and fail-safe mode disabled. The path followed depends on whether fail-safe mode is enabled or disabled in 8'h17[0] FSM_DIS.

For an under-voltage event, VCC is less than or equal to UVCCF. After the tUVFLTR time, the device pulls nRST low and transition to restart mode, if fail-safe disabled, or fail-safe mode. When entering either mode the SWE timer, tINACT_FS starts and for SPI control the mode counter increments and the appropriate interrupt flags are set. To exit fail-safe mode the under-voltage has to clear and a wake event takes place prior to the SWE timer timing out. If the under-voltage event has not cleared when the wake event takes place or if the SWE timer times out the device enters sleep mode. Figure 6-3 shows how a UVCC event is handled.

Figure 6-3 UVCC flow chart