SLLA535 December   2022 TLIN1431-Q1

 

  1. 1Introduction
    1.     Trademarks
  2. 2TLIN1431x-Q1 Hardware Component Functional Safety Capability
  3. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  4. 4TLIN1431x-Q1 Component Overview
    1. 4.1 Targeted Applications
    2. 4.2 Hardware Component Functional Safety Concept
    3. 4.3 Functional Safety Constraints and Assumptions
  5. 5Description of Hardware Component Parts
    1. 5.1 LIN Transceiver
    2. 5.2 Digital Core
    3. 5.3 Power Control IP
    4. 5.4 Digital Input/Output Pins and High-side Switch
  6. 6TLIN1431x-Q1 Management of Random Faults
    1. 6.1 Fault Reporting
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1 LIN Bus and Communication
        1. 6.3.1.1 SM-1: LIN TXD Pin Dominant State Timeout
        2. 6.3.1.2 SM-2: LIN Bus Stuck Dominant System Fault: False Wake Up Lockout
        3. 6.3.1.3 SM-3: LIN Bus Short Circuit Limiter
        4. 6.3.1.4 SM-20: LIN Internal pull-up to VSUP
        5. 6.3.1.5 SM-22: LIN Protocol
      2. 6.3.2 Voltage Rail Monitoring
        1. 6.3.2.1 SM-4: VCC and Transceiver Thermal Shutdown
        2. 6.3.2.2 SM-5: VCC Under-voltage
        3. 6.3.2.3 SM-6: VCC Over-voltage
        4. 6.3.2.4 SM-7: VCC Short to Ground
        5. 6.3.2.5 SM-8: VSUP Under-voltage
      3. 6.3.3 Processor Communication
        1. 6.3.3.1 SM-9 and SM-10: Watchdog
          1. 6.3.3.1.1 SM-9: Standby Mode Long Window Timeout Watchdog
          2. 6.3.3.1.2 SM-10: Normal Mode Watchdog
        2. 6.3.3.2 SM-11: SPI CRC
        3. 6.3.3.3 SM-12: SPI Communication Error; SPIERR
        4. 6.3.3.4 SM-13: Scratchpad Write/Read Register
        5. 6.3.3.5 SM-14: Sleep Wake Error Timer; tINACT_FS
      4. 6.3.4 Digital Input/Output Pins and High-side Switch
        1. 6.3.4.1 SM-15: CLK internal pull-up to VINT
        2. 6.3.4.2 SM-16: SDI internal pull-up to VINT
        3. 6.3.4.3 SM-17: nCS Internal pull-up to VINT
        4. 6.3.4.4 SM-18: DIV_ON Internal pull-down to GND
        5. 6.3.4.5 SM-19: TXD Internal pull-up to VINT
        6. 6.3.4.6 SM-21: nRST Internal pull-up to VINT
        7. 6.3.4.7 SM-23: HSS Over Current Detect
        8. 6.3.4.8 SM-24: HSS Open Load Detect
          1.        A Summary of Recommended Functional Safety Mechanism Usage
            1.         B Distributed Developments
              1.          B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
              2.          B.2 Activities Performed by Texas Instruments
              3.          B.3 Information Provided
                1.           C Revision History

TLIN1431x-Q1 Hardware Component Functional Safety Capability

This section summarizes the component functional safety capability.

This hardware component was developed according to the relevant requirements of ISO 26262:2018. FIT rates and failure mode distributions are provided as part of the Functional Safety Analysis Report for customers to calculate random fault integrity metrics. Recommendations are provided in this Functional Safety Manual for external safety mechanisms that may provide coverage for component failure modes. TI recommends that this component is integrated into the system through the strategy of "evaluation of hardware elements" (ISO 26262-8:2016 clause 13).