SLLA535 December   2022 TLIN1431-Q1

 

  1. 1Introduction
    1.     Trademarks
  2. 2TLIN1431x-Q1 Hardware Component Functional Safety Capability
  3. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  4. 4TLIN1431x-Q1 Component Overview
    1. 4.1 Targeted Applications
    2. 4.2 Hardware Component Functional Safety Concept
    3. 4.3 Functional Safety Constraints and Assumptions
  5. 5Description of Hardware Component Parts
    1. 5.1 LIN Transceiver
    2. 5.2 Digital Core
    3. 5.3 Power Control IP
    4. 5.4 Digital Input/Output Pins and High-side Switch
  6. 6TLIN1431x-Q1 Management of Random Faults
    1. 6.1 Fault Reporting
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1 LIN Bus and Communication
        1. 6.3.1.1 SM-1: LIN TXD Pin Dominant State Timeout
        2. 6.3.1.2 SM-2: LIN Bus Stuck Dominant System Fault: False Wake Up Lockout
        3. 6.3.1.3 SM-3: LIN Bus Short Circuit Limiter
        4. 6.3.1.4 SM-20: LIN Internal pull-up to VSUP
        5. 6.3.1.5 SM-22: LIN Protocol
      2. 6.3.2 Voltage Rail Monitoring
        1. 6.3.2.1 SM-4: VCC and Transceiver Thermal Shutdown
        2. 6.3.2.2 SM-5: VCC Under-voltage
        3. 6.3.2.3 SM-6: VCC Over-voltage
        4. 6.3.2.4 SM-7: VCC Short to Ground
        5. 6.3.2.5 SM-8: VSUP Under-voltage
      3. 6.3.3 Processor Communication
        1. 6.3.3.1 SM-9 and SM-10: Watchdog
          1. 6.3.3.1.1 SM-9: Standby Mode Long Window Timeout Watchdog
          2. 6.3.3.1.2 SM-10: Normal Mode Watchdog
        2. 6.3.3.2 SM-11: SPI CRC
        3. 6.3.3.3 SM-12: SPI Communication Error; SPIERR
        4. 6.3.3.4 SM-13: Scratchpad Write/Read Register
        5. 6.3.3.5 SM-14: Sleep Wake Error Timer; tINACT_FS
      4. 6.3.4 Digital Input/Output Pins and High-side Switch
        1. 6.3.4.1 SM-15: CLK internal pull-up to VINT
        2. 6.3.4.2 SM-16: SDI internal pull-up to VINT
        3. 6.3.4.3 SM-17: nCS Internal pull-up to VINT
        4. 6.3.4.4 SM-18: DIV_ON Internal pull-down to GND
        5. 6.3.4.5 SM-19: TXD Internal pull-up to VINT
        6. 6.3.4.6 SM-21: nRST Internal pull-up to VINT
        7. 6.3.4.7 SM-23: HSS Over Current Detect
        8. 6.3.4.8 SM-24: HSS Open Load Detect
          1.        A Summary of Recommended Functional Safety Mechanism Usage
            1.         B Distributed Developments
              1.          B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
              2.          B.2 Activities Performed by Texas Instruments
              3.          B.3 Information Provided
                1.           C Revision History

Description of Hardware Component Parts

A semiconductor component can be divided into parts to enable a more granular functional safety analysis. This can be useful to help assign specific functional safety mechanisms to portions of the design where they provide coverage ending up with a more complete and customizable functional safety analysis. This section includes a brief description of each hardware part of this component and lists the functional safety mechanisms that can be applied to each. This section is intended to provide additional details about the assignment of functional safety mechanisms that can be found in the Safety Analysis Report. The content in this section is also summarized in Appendix A.