SLLA535 December   2022 TLIN1431-Q1

 

  1. 1Introduction
    1.     Trademarks
  2. 2TLIN1431x-Q1 Hardware Component Functional Safety Capability
  3. 3Development Process for Management of Systematic Faults
    1. 3.1 TI New-Product Development Process
    2. 3.2 TI Functional Safety Development Process
  4. 4TLIN1431x-Q1 Component Overview
    1. 4.1 Targeted Applications
    2. 4.2 Hardware Component Functional Safety Concept
    3. 4.3 Functional Safety Constraints and Assumptions
  5. 5Description of Hardware Component Parts
    1. 5.1 LIN Transceiver
    2. 5.2 Digital Core
    3. 5.3 Power Control IP
    4. 5.4 Digital Input/Output Pins and High-side Switch
  6. 6TLIN1431x-Q1 Management of Random Faults
    1. 6.1 Fault Reporting
    2. 6.2 Functional Safety Mechanism Categories
    3. 6.3 Description of Functional Safety Mechanisms
      1. 6.3.1 LIN Bus and Communication
        1. 6.3.1.1 SM-1: LIN TXD Pin Dominant State Timeout
        2. 6.3.1.2 SM-2: LIN Bus Stuck Dominant System Fault: False Wake Up Lockout
        3. 6.3.1.3 SM-3: LIN Bus Short Circuit Limiter
        4. 6.3.1.4 SM-20: LIN Internal pull-up to VSUP
        5. 6.3.1.5 SM-22: LIN Protocol
      2. 6.3.2 Voltage Rail Monitoring
        1. 6.3.2.1 SM-4: VCC and Transceiver Thermal Shutdown
        2. 6.3.2.2 SM-5: VCC Under-voltage
        3. 6.3.2.3 SM-6: VCC Over-voltage
        4. 6.3.2.4 SM-7: VCC Short to Ground
        5. 6.3.2.5 SM-8: VSUP Under-voltage
      3. 6.3.3 Processor Communication
        1. 6.3.3.1 SM-9 and SM-10: Watchdog
          1. 6.3.3.1.1 SM-9: Standby Mode Long Window Timeout Watchdog
          2. 6.3.3.1.2 SM-10: Normal Mode Watchdog
        2. 6.3.3.2 SM-11: SPI CRC
        3. 6.3.3.3 SM-12: SPI Communication Error; SPIERR
        4. 6.3.3.4 SM-13: Scratchpad Write/Read Register
        5. 6.3.3.5 SM-14: Sleep Wake Error Timer; tINACT_FS
      4. 6.3.4 Digital Input/Output Pins and High-side Switch
        1. 6.3.4.1 SM-15: CLK internal pull-up to VINT
        2. 6.3.4.2 SM-16: SDI internal pull-up to VINT
        3. 6.3.4.3 SM-17: nCS Internal pull-up to VINT
        4. 6.3.4.4 SM-18: DIV_ON Internal pull-down to GND
        5. 6.3.4.5 SM-19: TXD Internal pull-up to VINT
        6. 6.3.4.6 SM-21: nRST Internal pull-up to VINT
        7. 6.3.4.7 SM-23: HSS Over Current Detect
        8. 6.3.4.8 SM-24: HSS Open Load Detect
          1.        A Summary of Recommended Functional Safety Mechanism Usage
            1.         B Distributed Developments
              1.          B.1 How the Functional Safety Lifecycle Applies to TI Functional Safety Products
              2.          B.2 Activities Performed by Texas Instruments
              3.          B.3 Information Provided
                1.           C Revision History

Targeted Applications

The TLIN1431x-Q1 component is targeted at general-purpose functional safety applications utilizing SPI control. This is called Safety Element out of Context (SEooC) development according to ISO 26262-10. In this case, the development is done based on assumptions on the conditions of the semiconductor component usage, and then the assumptions are verified at the system level. This method is also used to meet the related requirements of IEC 61508 at the semiconductor level. This section describes some of the target applications for this component, the component safety concept, and then describes the assumptions about the systems (also known as Assumptions of Use or AoU) that were made in performing the safety analysis.

Example target applications include, but are not limited to, the following:

  • General purpose applications containing a processor utilizing serial peripheral interface (SPI) to control the TLIN1431-Q1.

Figure 4-3 shows a generic block diagram for a general purpose system. This diagram is only an example and may not represent a complete system. Figure 4-4 provides potential failure points that have diagnostic or test ability mechanisms.

Figure 4-3 Typical Application - SPI Control
Figure 4-4 Typical Application - SPI Control Potential Failure Points
Table 4-1 SPI Control Potential Failure Points and Safety Mechanisms
Potential Failure Point from Figure 4-4 Potential Failure Point Description Section
1 LIN communication Section 6.3.1
2 Supply voltage rail monitoring Section 6.3.2
3 SPI/Processor communication Section 6.3.3
4 Floating pins Section 6.3.4