SLLA628 September   2023 THVD1424

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Use Case Domain of RS-485
    1. 1.1 RS-485 Compliant Transmitter
    2. 1.2 RS-485 Compliant Receiver
    3. 1.3 RS-485 Transceiver Use Case Variability
  5. 2Traditional RS-485 Design Process
    1. 2.1 Design Process Overview
    2. 2.2 Requirement Definition
      1. 2.2.1 Bus Voltage and Logic Voltage (VCC and VIO):
      2. 2.2.2 Number of Communication Nodes Supported plus Static vs. Dynamic Systems
      3. 2.2.3 Max Bus Length, Network Topology, Emission Concerns, and Data Rate Required
      4. 2.2.4 Duplex
      5. 2.2.5 Protection Needs
      6. 2.2.6 Additional Features of RS-485 Bus
    3. 2.3 IC Selection, Application Design, and Validation/Qualification
  6. 3One Multi-System Design: Flexible RS-485 with the THVD1424
    1. 3.1 Flexible Multi-System Design
    2. 3.2 Simplification of RS-485 Design Process Using THVD1424
      1. 3.2.1 Bus Voltage and Logic Voltage Supplies (VCC and VIO)
      2. 3.2.2 Number of Communication Nodes Supported plus Dynamic or Static Systems
      3. 3.2.3 Max Bus Length, Network Topology, Data Rate, and Emissions Concerns
      4. 3.2.4 Duplex
      5. 3.2.5 Protection Needs
      6. 3.2.6 Additional Features
  7. 4Summary
  8. 5References

Summary

It is clear that most of the possible variability in the RS-485 design process can be handled by one RS-485 device – the THVD1424. Not only will this process also impact the difference between different application designs (with one only one-part design changes are typically marginal) but also has the potential to save on time spent qualifying devices – as a new device selection isn’t needed with each new RS-485 based application.