SLLA643 August   2024 MCF8315C , MCF8315C-Q1 , MCF8316C-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Power Pin Design Recommendations
    1. 2.1 VM
    2. 2.2 Charge Pump: CPH, CPL, CP
    3. 2.3 Buck Converter: FB_BK, SW_BK, GND_BK
    4. 2.4 AVDD
    5. 2.5 DVDD
    6. 2.6 PGND, AGND, DGND
    7. 2.7 Thermal Pad
  6. 3MCF831xC Buck Regulator Overview
    1. 3.1 Buck Regulator Mode of Operation
    2. 3.2 Buck Regulator Output Voltage
    3. 3.3 Buck Power Sequencing
    4. 3.4 Buck Inductor Selection
    5. 3.5 MCF831xC Operation Without Buck Regulator
  7. 4MCF831xC IO Pins Design Recommendations
    1. 4.1 SPEED Pin
    2. 4.2 BRAKE, DIR, DRVOFF pins
    3. 4.3 EXT_CLK, EXT_WD
    4. 4.4 ALARM
    5. 4.5 DACOUT1, DACOUT2
    6. 4.6 SDA, SCL
    7. 4.7 nFAULT and FG pin
  8. 5MCF831xC PCB Schematic and Layout Recommendations
    1. 5.1 Single Ground Plane
    2. 5.2 Single Ground with AVDD Shorted to FB_BK
    3. 5.3 Two Grounds
  9. 6Summary
  10. 7References

Charge Pump: CPH, CPL, CP

MCF831xC devices have an integrated charge pump to drive the high-side (HS) FETs. The charge pump needs two external capacitors – a fly cap between CPH and CPL pins rated at 47nF, (twice the VM voltage) and a bucket cap between CP and VM pins rated at 1uF, 16V. The charge pump output (CP) is for internal circuits only and cannot drive any external loads (like a high-side pass FET for reverse blocking, and so on).