SLLS236J October   1996  – July 2024 SN65LBC184 , SN75LBC184

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics: Driver
    6. 5.6  Electrical Characteristics: Receiver
    7. 5.7  Driver Switching Characteristics
    8. 5.8  Receiver Switching Characteristics
    9. 5.9  Dissipation Ratings
    10. 5.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Data Rate and Bus Length
        2. 8.2.1.2 Stub Length
        3. 8.2.1.3 Bus Loading
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 SN65LBC184 Test Description
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Feature Description

Integrated transient voltage suppressors protect the transceiver against Electrostatic Discharges (ESD) according to IEC 61000-4-2 of up to ±30kV and surge transients according to IEC 61000-4-5 of up to 400W peak.

The differential driver incorporates slew-rate controlled outputs sufficient to transmit data up to 250kbps. Slew-rate control allows for longer unterminated cable runs and longer stub lengths from the main cable trunk than with faster voltage transitions. A unique receiver design provides a high level failsafe output when the inputs are left floating.

The SN65LBC184 is characterized from –40°C to 85°C and the SN75LBC184 is characterized from 0°C to 70°C.