SLLSEZ5D January   2018  – June 2022 TCAN4550-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specification
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  ESD Ratings, IEC ESD and ISO Transient Specification
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Supply Characteristics
    7. 6.7  Electrical Characteristics
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  VSUP Pin
      2. 8.3.2  VIO Pin
      3. 8.3.3  VCCOUT Pin
      4. 8.3.4  GND
      5. 8.3.5  INH Pin
      6. 8.3.6  WAKE Pin
      7. 8.3.7  FLTR Pin
      8. 8.3.8  RST Pin
      9. 8.3.9  OSC1 and OSC2 Pins
      10. 8.3.10 nWKRQ Pin
      11. 8.3.11 nINT Interrupt Pin
      12. 8.3.12 GPIO1 Pin
      13. 8.3.13 GPO2 Pin
      14. 8.3.14 CANH and CANL Bus Pins
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Sleep Mode
        1. 8.4.3.1 Bus Wake via RXD_INT Request (BWRR) in Sleep Mode
        2. 8.4.3.2 Local Wake-Up (LWU) via WAKE Input Terminal
      4. 8.4.4 Test Mode
      5. 8.4.5 Failsafe Feature
      6. 8.4.6 Protection Features
        1. 8.4.6.1 Watchdog Function
        2. 8.4.6.2 Driver and Receiver Function
        3. 8.4.6.3 Floating Terminals
        4. 8.4.6.4 TXD_INT Dominant Timeout (DTO)
        5. 8.4.6.5 CAN Bus Short Circuit Current Limiting
        6. 8.4.6.6 Thermal Shutdown
        7. 8.4.6.7 Under-Voltage Lockout (UVLO) and Unpowered Device
          1. 8.4.6.7.1 UVSUP and UVCCOUT
          2. 8.4.6.7.2 UVIO
          3. 8.4.6.7.3 Fault and M_CAN Core Behavior:
      7. 8.4.7 CAN FD
    5. 8.5 Programming
      1. 8.5.1 SPI Communication
        1. 8.5.1.1 Chip Select Not (nCS):
        2. 8.5.1.2 SPI Clock Input (SCLK):
        3. 8.5.1.3 SPI Data Input (SDI):
        4. 8.5.1.4 SPI Data Output (SDO):
      2. 8.5.2 Register Descriptions
    6. 8.6 Register Maps
      1. 8.6.1 Device ID and Interrupt/Diagnostic Flag Registers: 16'h0000 to 16'h002F
        1. 8.6.1.1 DEVICE_ID1[31:0] (address = h0000) [reset = h4E414354]
        2. 8.6.1.2 DEVICE_ID2[31:0] (address = h0004) [reset = h30353534]
        3. 8.6.1.3 Revision (address = h0008) [reset = h00110201]
        4. 8.6.1.4 Status (address = h000C) [reset = h0000000U]
        5. 8.6.1.5 SPI Error status mask (address = h0010) [reset = h00000000]
      2. 8.6.2 Device Configuration Registers: 16'h0800 to 16'h08FF
        1. 8.6.2.1 Modes of Operation and Pin Configuration Registers (address = h0800) [reset = hC8000468]
        2. 8.6.2.2 Timestamp Prescaler (address = h0804) [reset = h00000002]
        3. 8.6.2.3 Test Register and Scratch Pad (address = h0808) [reset = h00000000]
        4. 8.6.2.4 Test Register (address = h080C) [reset = h00000000]
      3. 8.6.3 Interrupt/Diagnostic Flag and Enable Flag Registers: 16'h0820/0824 and 16'h0830
        1. 8.6.3.1 Interrupts (address = h0820) [reset = h00100000]
        2. 8.6.3.2 MCAN Interrupts (address = h0824) [reset = h00000000]
        3. 8.6.3.3 Interrupt Enables (address = h0830 ) [reset = hFFFFFFFF]
      4. 8.6.4 CAN FD Register Set: 16'h1000 to 16'h10FF
        1. 8.6.4.1  Core Release Register (address = h1000) [reset = hrrrddddd]
        2. 8.6.4.2  Endian Register (address = h1004) [reset = h87654321]
        3. 8.6.4.3  Customer Register (address = h1008) [reset = h00000000]
        4. 8.6.4.4  Data Bit Timing & Prescaler (address = h100C) [reset = h0000A33]
        5. 8.6.4.5  Test Register (address = h1010 ) [reset = h00000000]
        6. 8.6.4.6  RAM Watchdog (address = h1014) [reset = h00000000]
        7. 8.6.4.7  Control Register (address = h1018) [reset = 0000 0019]
        8. 8.6.4.8  Nominal Bit Timing & Prescaler Register (address = h101C) [reset = h06000A03]
        9. 8.6.4.9  Timestamp Counter Configuration (address = h1020) [reset = h00000000]
        10. 8.6.4.10 Timestamp Counter Value (address = h1024) [reset = h00000000]
        11. 8.6.4.11 Timeout Counter Configuration (address = h1028) [reset = hFFFF0000]
        12. 8.6.4.12 Timeout Counter Value (address = h102C) [reset = h0000FFFF]
        13. 8.6.4.13 Reserved (address = h1030 - h103C) [reset = h00000000]
        14. 8.6.4.14 Error Counter Register (address = h1040) [reset = h00000000]
        15. 8.6.4.15 Protocol Status Register (address = h1044) [reset = h00000707]
        16. 8.6.4.16 Transmitter Delay Compensation Register (address = h1048) [reset = h00000000]
        17. 8.6.4.17 Reserved (address = h104C) [reset = h00000000]
        18. 8.6.4.18 Interrupt Register (address = h1050) [reset = h00000000]
        19. 8.6.4.19 Interrupt Enable (address = h1054) [reset = h00000000]
        20. 8.6.4.20 Interrupt Line Select (address = h1058) [reset = h00000000]
        21. 8.6.4.21 Interrupt Line Enable (address = h105C) [reset = h00000000]
        22. 8.6.4.22 Reserved (address = h1060 - h107C) [reset = h00000000]
        23. 8.6.4.23 Global Filter Configuration (address = h1080) [reset = h00000000]
        24. 8.6.4.24 Standard ID Filter Configuration (address = h1084) [reset = h00000000]
        25. 8.6.4.25 Extended ID Filter Configuration (address = h1088) [reset = h00000000]
        26. 8.6.4.26 Reserved (address = h108C) [reset = h00000000]
        27. 8.6.4.27 Extended ID AND Mask (address = h1090) [reset = h1FFFFFFF]
        28. 8.6.4.28 High Priority Message Status (address = h1094) [reset = h00000000]
        29. 8.6.4.29 New Data 1 (address = h1098) [reset = h00000000]
        30. 8.6.4.30 New Data 2 (address = h109C) [reset = h00000000]
        31. 8.6.4.31 Rx FIFO 0 Configuration (address = h10A0) [reset = h00000000]
        32. 8.6.4.32 Rx FIFO 0 Status (address = h10A4) [reset = h00000000]
        33. 8.6.4.33 Rx FIFO 0 Acknowledge (address = h10A8) [reset = h00000000]
        34. 8.6.4.34 Rx Buffer Configuration (address = h10AC) [reset = h00000000]
        35. 8.6.4.35 Rx FIFO 1 Configuration (address = h10B0) [reset = h00000000]
        36. 8.6.4.36 Rx FIFO 1 Status (address = h10B4) [reset = h00000000]
        37. 8.6.4.37 Rx FIFO 1 Acknowledge (address = h10B8) [reset = h00000000]
        38. 8.6.4.38 Rx Buffer/FIFO Element Size Configuration (address = h10BC) [reset = h00000000]
        39. 8.6.4.39 Tx Buffer Configuration (address = h10C0) [reset = h00000000]
        40. 8.6.4.40 Tx FIFO/Queue Status (address = h10C4) [reset = h00000000]
        41. 8.6.4.41 Tx Buffer Element Size Configuration (address = h10C8) [reset = h00000000]
        42. 8.6.4.42 Tx Buffer Request Pending (address = h10CC) [reset = h00000000]
        43. 8.6.4.43 Tx Buffer Add Request (address = h10D0) [reset = h00000000]
          1. 8.6.4.43.1  Tx Buffer Cancellation Request (address = h10D4 [reset = h00000000]
          2. 8.6.4.43.2  Tx Buffer Add Request Transmission Occurred (address = h10D8) [reset = h00000000]
          3. 8.6.4.43.3  Tx Buffer Cancellation Finished (address = h10DC) [reset = h00000000]
          4. 8.6.4.43.4  Tx Buffer Transmission Interrupt Enable (address = h10E0) [reset = h00000000]
          5. 8.6.4.43.5  Tx Buffer Cancellation Finished Interrupt Enable (address = h10E4) [reset = h00000000]
          6. 8.6.4.43.6  Reserved (address = h10E8) [reset = h00000000]
          7. 8.6.4.43.7  Reserved (address = h10EC) [reset = h00000000]
          8. 8.6.4.43.8  Tx Event FIFO Configuration (address = h10F0) [reset = h00000000]
          9. 8.6.4.43.9  Tx Event FIFO Status (address = h10F4) [reset = h00000000]
          10. 8.6.4.43.10 Tx Event FIFO Acknowledge (address = h10F8) [reset = h00000000]
          11. 8.6.4.43.11 Reserved (address = h10FC) [reset = h00000000]
  9. Application and Implementation
    1. 9.1 Application Design Consideration
      1. 9.1.1 Crystal and Clock Input Requirements
      2. 9.1.2 Bus Loading, Length and Number of Nodes
      3. 9.1.3 CAN Termination
        1.       Termination
        2. 9.1.3.1 CAN Bus Biasing
      4. 9.1.4 INH Brownout Behavior
    2. 9.2 Typical Application
      1. 9.2.1 Detailed Requirements
      2. 9.2.2 Detailed Design Procedures
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
        1. 12.1.1.1 CAN Transceiver Physical Layer Standards:
        2. 12.1.1.2 EMC requirements:
        3. 12.1.1.3 Conformance Test requirements:
        4. 12.1.1.4 Support Documents
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Switching Characteristics

over operating free-air temperature range for – 40 ℃ ≤ TA ≤ 125 ℃ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SWITCHING CHARACTERISTICS (CAN TRANSCEIVER ONLY)
tpHR Propagation delay time, high TXD_INT to Driver Recessive (1) See Figure 7-4, RST = 0 V. Typical conditions: RL = 60 Ω, CL = 100 pF, RCM = open 50 85 110 ns
tpLD Propagation delay time, low TXD_INT to driver dominant (1) 35 75 100 ns
tsk(p) Pulse skew (|tpHR – tpLD|) 30 40 ns
tR/F Differential output signal rise time: 8 55 75 ns
tpRH Propagation delay time, bus recessive input to high RXD_INT output See Figure 7-5, typical conditions: CANL = 1.5 V, CANH = 3.5 V. 35 55 90 ns
tpDL Propagation delay time, bus dominant input to RXD_INT low output 35 55 90 ns
DEVICE SWITCHING CHARACTERISTICS
tLOOP Loop delay(3)(CAN transceiver only) See Figure 7-6, RST = 0 V. typical conditions: RL = 60 Ω, CL = 100 pF, CRXD = 15 pF 235 ns
tWK_FILTER Bus time to meet filtered bus requirements for wake up request See Figure 8-6, standby mode. 0.5 1.8 µs
tWK_TIMEOUT Bus wake-up timeout: time that a WUP must take place within to be considered valid See Figure 8-6 0.5 2.9 ms
tSILENCE Timeout for bus inactivity (6) Timer is reset and restarted when bus changes from dominant to recessive or vice versa. 0.6 1.2 s
tINACTIVE Time required for the processor to clear wake flag or put the device into normal mode upon power up, power on reset or after wake event otherwise the device will enter sleep mode (6) 2 4 6 min
tBias Time from the start of a dominant-recessive-dominant sequence Each phase 6 µs until Vsym ≥ 0.1. See Figure 7-10 250 µs
tPower_Up Power up time on VSUP  (6) See Figure 7-13 250 µs
tTXD_INT_DTO Dominant time out(2) (CAN transceiver only)(1) See Figure 8-7, RL = 60 Ω, CL = open 1 5 ms
TRANSMITTER AND RECEIVER SWITCHING CHARACTERISTICS
tBit(Bus)2M Transmitted recessive bit width @ 2 Mbps See Figure 7-5, RST = 0 V typical conditions: RL = 60 Ω, CL = 100 pF, CRXD = 15 pF 435 530 ns
tBit(Bus)5M Transmitted recessive bit width @ 5 Mbps 155 210 ns
tBit(Bus)8M (5) Transmitted recessive bit width @ 8 Mbps See Figure 7-5, RST = 0 V typical conditions: RL = 60 Ω, CL = 100 pF, CRXD = 15 pF 80 135 ns
tBit(RXD)2M Received recessive bit width @ 2 Mbps See Figure 7-5, RST = 0 V typical conditions: RL = 60 Ω, CL = 100 pF, CRXD = 15 pF, 400 550 ns
tBit(RXD)5M Received recessive bit width @ 5 Mbps 120 220 ns
tBit(RXD)8M (5) Received recessive bit width @ 8 Mbps See Figure 7-5, RST = 0 V typical conditions: RL = 60 Ω, CL = 100 pF, CRXD = 15 pF 80 135 ns
ΔtRec (4) Receiver Timing symmetry @ 2 Mbps See Figure 7-5, RST = 0 V typical conditions: RL = 60 Ω, CL = 100 pF, CRXD = 15 pF –65 30 40 ns
Receiver Timing symmetry @ 5 Mbps –45 5 15 ns
SPI SWITCHING CHARACTERISTICS
fSCK SCK, SPI clock frequency (6) 18 MHz
tSCK SCK, SPI clock period (6) See Figure 7-12 56 ns
tRSCK SCK rise time (6) See Figure 7-11 10 ns
tFSCK SCK fall time (6) See Figure 7-11 10 ns
tSCKH SCK, SPI clock high (6) See Figure 7-12 18 ns
tSCKL SCK, SPI clock low (6) See Figure 7-12 18 ns
tCSS Chip select setup time (6) See Figure 7-11 28 ns
tCSH Chip select hold time (6) See Figure 7-11 28 ns
tCSD Chip select disable time (6) See Figure 7-11 125 ns
tSISU Data in setup time (6) See Figure 7-11 5 ns
tSIH Data in hold time (6) See Figure 7-11 10 ns
tSOV Data out valid (6) VIO = 3.135 V to 5.25 V, See Figure 7-12 20 ns
tRSO SO rise time (6) See Figure 7-12 10 ns
tFSO SO fall time (6) See Figure 7-12 10 ns
All TXD_INT, RXD_INT, EN_INT and CAN transceiver only references are for internal nodes that represent the same functions for a stand-alone transceiver.
The TXD_INT dominant time out (tTXD_INT_DTO) disables the driver of the transceiver once the TXD_INT has been dominant longer than tTXD_INT_DTO, which releases the bus lines to recessive, preventing a local failure from locking the bus dominant. The driver may only transmit dominant again after TXD_INT has been returned HIGH (recessive). While this protects the bus from local faults, locking the bus dominant, it limits the minimum data rate possible. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD_INT) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the tTXD_INT_DTO minimum, limits the minimum bit rate. The minimum bit rate may be calculated by: Minimum Bit Rate = 11/ tTXD_INT_DTO = 11 bits / 1.2 ms = 9.2 kbps.
Time span from signal edge on TXD_INT input to next signal edge with same polarity on RXD output, the maximum of delay of both signal edges is to be considered.
ΔtRec = tBit(RXD) – tBit(Bus)
Characterized but not 100% tested
Specified by design