SLLU364 may   2023 MCT8315A

 

  1.   1
  2.   Abstract
  3. 1Revision History
  4.   Trademarks
  5. 2Introduction
    1. 2.1 Hardware and GUI setup
      1. 2.1.1 Jumper Configuration
      2. 2.1.2 External Connections
      3. 2.1.3 Connecting to the GUI
        1. 2.1.3.1 Connect to computer
        2. 2.1.3.2 Connect to the GUI
        3. 2.1.3.3 Verify Hardware Connection
  6. 3Essential Controls
    1. 3.1 Recommended Default Values based on application
    2. 3.2 Device and Pin Configuration
      1. 3.2.1 Speed input mode
    3. 3.3 Algorithm configuration – Motor speed
      1. 3.3.1 Maximum motor electrical speed (Hz)
    4. 3.4 Control Configuration
      1. 3.4.1 Cycle by cycle current limit (ILIMIT)
    5. 3.5 Testing for successful startup into closed loop
    6. 3.6 Fault handling
      1. 3.6.1 Abnormal Speed [ABN_SPEED]
      2. 3.6.2 Loss of Sync [LOSS_OF_SYNC]
      3. 3.6.3 No Motor Fault [NO_MTR]
      4. 3.6.4 Cycle by cycle current limit [CBC_ILIMIT]
  7. 4Basic Controls
    1. 4.1 Device and pin configuration
      1. 4.1.1 Power saver or sleep mode for battery operated applications
      2. 4.1.2 Direction and Brake pin override
    2. 4.2 System level configuration
      1. 4.2.1 Tracking motor speed feedback in real time
      2. 4.2.2 Monitoring power supply voltage fluctuations for normal motor operation
    3. 4.3 Control configurations
      1. 4.3.1  Initial speed detection of the motor for reliable motor resynchronization
      2. 4.3.2  Unidirectional motor drive detecting backward spin
      3. 4.3.3  Preventing back spin of rotor during startup
      4. 4.3.4  Faster startup timing
      5. 4.3.5  Improving speed regulation
      6. 4.3.6  Stopping motor quickly
      7. 4.3.7  Faster deceleration
      8. 4.3.8  Preventing supply voltage overshoot during motor stop and deceleration
      9. 4.3.9  Protecting against rotor lock or stall condition
      10. 4.3.10 Maximizing thermal efficiency and increasing thermal performance
      11. 4.3.11 Mitigating Electromagnetic Interference (EMI)
      12. 4.3.12 Improving Motor efficiency
      13. 4.3.13 Limiting and regulating supply power

Initial speed detection of the motor for reliable motor resynchronization

The Initial Speed Detection (ISD) function is used to identify the initial condition of the motor. It is important to know the initial condition of the motor for reliable resynchronization. Motor resynchronization failures can occur when the device attempts to start the motor while the motor is coasting or spinning in the direction opposite to the intended direction of spin. Motors can coast in applications that require frequent motor starts and stops, or if the motor Is being forced externally or if there is a power interruption. Motors can spin in the direction opposite to the intended direction of spin if motor phase wires are connected to OUTA, OUTB and OUTC in wrong sequence or when wrong direction command is issued. Motors with higher inertia coast for a longer period of time. It is recommended to have ISD enabled in applications that require frequent motor starts and stops and use higher inertia motors.

Step 1: Enable ISD [ISD_EN]

Step 2: Enable Motor ISD Resynchronize [RESYNC_EN]

Note:

If the motor fails to startup, increase the Motor Stationary BEMF Threshold [STAT_DETECT_THR].