SLLU374 November   2024 MCF8329A

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Hardware Design and Setup
    1. 2.1 Board Design
      1. 2.1.1 External MOSFET Selection
      2. 2.1.2 Gate Resistor Selection
      3. 2.1.3 Bootstrap and GVDD Capacitor Selection
      4. 2.1.4 Current Shunt Resistor Selection
      5. 2.1.5 VREG MOSFET Selection
      6. 2.1.6 Additional External Power Stage Components
  6. 3Connecting to the GUI
  7. 4Spinning Into Closed Loop
    1. 4.1 Essential Configuration
      1. 4.1.1 Loading Recommended Default Values
      2. 4.1.2 Setting Base Current
      3. 4.1.3 Setting Current Limits
      4. 4.1.4 Setting Voltage Limits
      5. 4.1.5 Input the Motor's Phase Resistance and Inductance
      6. 4.1.6 Maximum Electrical Speed (Hz)
      7. 4.1.7 Run MPET to Identify Motor Parameters
        1. 4.1.7.1 Skipping MPET Measurements
    2. 4.2 Testing for Successful Startup Into Closed Loop
  8. 5Basic Controls
    1. 5.1 Speed Input Mode
    2. 5.2 Preventing Back Spin of Rotor During Startup
    3. 5.3 Faster Startup Timing
    4. 5.4 Improving Speed Regulation
    5. 5.5 Limiting and Regulating Supply Power
    6. 5.6 MTPA Tuning
    7. 5.7 Motor Studio Optimization Wizards
  9. 6Fault Handling
    1. 6.1 MPET BEMF FAULT [MPET_BEMF_FAULT]
    2. 6.2 Abnormal BEMF Fault [ABN_BEMF]
    3. 6.3 Lock Current Limit [LOCK_LIMIT]
    4. 6.4 Hardware Lock Current Limit [HW_LOCK_LIMIT]
    5. 6.5 No Motor Fault [NO_MTR]
    6. 6.6 Abnormal Speed [ABN_SPEED]

Bootstrap and GVDD Capacitor Selection

The bootstrap and GVDD capacitors must both be sized appropriately to maintain the bootstrap voltage above the under-voltage lockout threshold during normal operation. For instructions to determine an appropriate capacitance for both the bootstrap capacitors and GVDD capacitor, see the Bootstrap Capacitor and GVDD Capacitor Selection sections of the MCF8329A Sensorless Field Oriented Control (FOC) Three-phase BLDC Gate Driver Data Sheet.