SLLU387 August   2024

 

  1.   1
  2.   Description
  3.   Get Started
  4.   Features
  5.   Applications
  6.   6
  7. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 Specification
    4. 1.4 Device Information
  8. 2Hardware
    1. 2.1 Quick Start Guide
    2. 2.2 Hardware Setup
    3. 2.3 Hardware Connections Overview – MCF8315RRYEVM
    4. 2.4 Connection Details
    5. 2.5 MSP430FR2355 Microcontroller
    6. 2.6 LED Lights
    7. 2.7 User-Configurable Settings
  9. 3Software
    1. 3.1 Firmware and GUI Application
    2. 3.2 Downloading and Running Motor Studio
    3. 3.3 Downloading Code Composer Studio and Importing GUI Firmware Code
    4. 3.4 Using eZ-FET to Program the Onboard MSP430FR2355
  10. 4Hardware Design Files
    1. 4.1 Schematics
      1. 4.1.1 Main Supply and Pi Filter
      2. 4.1.2 Connectors and Interface
      3. 4.1.3 USB to UART
      4. 4.1.4 MCU Programming and Debug
      5. 4.1.5 MSP430FR2355 MCU
      6. 4.1.6 MCF8315 3-Phase Sensorless FOC Integrated Driver
      7. 4.1.7 Buck Regulator
      8. 4.1.8 Status LEDs
      9. 4.1.9 Switches and Speed Input
    2. 4.2 PCB Layouts
    3. 4.3 Bill of Materials (BOM)
  11. 5Additional Information
    1. 5.1 Trademarks

Hardware Connections Overview – MCF8315RRYEVM

Figure 2-2 shows the major blocks of MCF8315RRYEVM. The MCF8315RRYEVM is designed for an input supply from 4.5V to 35V. The MCF8315 includes three integrated half-bridges and implements a sensorless FOC algorithm to spin a motor with up to 4A peak current. The MCF8315 also integrates an adjustable buck regulator. For interfacing with the GUI, the MCF8315RRYEVM has an onboard FTDI chip and MSP430.

MCF8315RRYEVM MCF8315RRYEVM Major Hardware
          Blocks Figure 2-2 MCF8315RRYEVM Major Hardware Blocks