SLOA049D July   2000  – February 2023

 

  1.   Abstract
  2.   Trademarks
  3. Introduction
  4. Filter Characteristics
  5. Second-Order Low-Pass Filter Standard Form
  6. Math Review
  7. Examples
    1. 5.1 Second-Order Low-Pass Butterworth Filter
    2. 5.2 Second-Order Low-Pass Bessel Filter
    3. 5.3 Second-Order Low-Pass Chebyshev Filter with 3-dB Ripple
  8. Low-Pass Sallen-Key Architecture
  9. Low-Pass Multiple Feedback (MFB) Architecture
  10. Cascading Filter Stages
  11. Filter Tables
  12. 10Example Circuit Simulated Results
  13. 11Non-ideal Circuit Operation
    1. 11.1 Non-ideal Circuit Operation: Sallen-Key
    2. 11.2 Non-ideal Circuit Operation: MFB
  14. 12Comments About Component Selection
  15. 13Conclusion
  16.   A Filter Design Specifications
    1.     A.1 Sallen-Key Design Simplifications
      1.      A.1.1 Sallen-Key Simplification 1: Set Filter Components as Ratios
      2.      A.1.2 Sallen-Key Simplification 2: Set Filter Components as Ratios and Gain = 1
      3.      A.1.3 Sallen-Key Simplification 3: Set Resistors as Ratios and Capacitors Equal
      4.      A.1.4 Sallen-Key Simplification 4: Set Filter Components Equal
    2.     A.2 MFB Design Simplifications
      1.      A.2.1 MFB Simplification 1: Set Filter Components as Ratios
      2.      A.2.2 MFB Simplification 2: Set Filter Components as Ratios and Gain = –1
  17.   B Higher-Order Filters
    1.     B.1 Fifth-Order Low-Pass Butterworth Filter
    2.     B.2 Sixth-Order Low-Pass Bessel Filter
  18.   C Revision History

Filter Tables

Typically, filter books list the zeros or the coefficients of the particular polynomial being used to define the filter type. As seen previously in this document, a certain amount of mathematical manipulation is required to turn this information into a circuit realization. The relationships between the zeros and the frequency scaling factor ( F S F ) and quality factor ( Q ) are given by F S F = Re 2 + lm 2 and Q = Re 2 + lm 2 2 Re , where Re and Im are the real and imaginary parts of the complex-conjugate zero pair. Table 9-1 through Table 9-4 are generated in this way. Higher-order filters are constructed by cascading second-order stages for even-order filters (one for each complex-conjugate zero pair). A first-order stage is then added if the filter order is odd. With the filter tables arranged this way, the preliminary mathematical work is done and the designer is only left with calculating the circuit component values based on three formulas.

For a low-pass Sallen-Key filter with cutoff frequency f c and pass-band gain K , set K = R 3 + R 4 R 3 , F S F × f c = 1 2 π R 1 R 2 C 1 C 2 , and Q = R 1 R 2 C 1 C 2 R 1 C 1 + R 2 C 1 + R 1 C 2 ( 1 - K ) for each second-order stage. If an odd order is required, set F S F × f c = 1 2 πRC for that stage.

For a low-pass MFB filter with cutoff frequency f c and pass-band gain K , set K = - R 2 R 1 , F S F × f c = 1 2 π R 2 R 3 C 1 C 2 , and Q = R 2 R 3 C 1 C 2 R 3 C 1 + R 2 C 1 + R 3 C 1 ( - K ) for each second-order stage. If an odd order is required, set F S F × f c = 1 2 πRC for that stage.

The tables are arranged so that increasing Q is associated with increasing stage order. High-order filters are normally arranged in this manner to help prevent clipping.

Table 9-1 Butterworth Filter Table
Filter Order Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
F S F Q F S F Q F S F Q F S F Q F S F Q
2 1.000 0.7071
3 1.000 1.0000 1.000
4 1.000 0.5412 1.000 1.3065
5 1.000 0.6180 1.000 1.6181 1.000
6 1.000 0.5177 1.000 0.7071 1.000 1.9320
7 1.000 0.5549 1.000 0.8019 1.000 2.2472 1.000
8 1.000 0.5098 1.000 0.6013 1.000 0.8999 1.000 2.5628
9 1.000 0.5321 1.000 0.6527 1.000 1.0000 1.000 2.8802 1.000
10 1.000 0.5062 1.000 0.5612 1.000 0.7071 1.000 1.1013 1.000 3.1969
Table 9-2 Bessel Filter Table
Filter Order Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
F S F Q F S F Q F S F Q F S F Q F S F Q
2 1.2736 0.5773
3 1.4524 0.6910 1.3270
4 1.4192 0.5219 1.5912 0.8055
5 1.5611 0.5635 1.7607 0.9165 1.5069
6 1.6060 0.5103 1.6913 0.6112 1.9071 1.0234
7 1.7174 0.5324 1.8235 0.6608 2.0507 1.1262 1.6853
8 1.7837 0.5060 2.1953 1.2258 1.9591 0.7109 1.8376 0.5596
9 1.8794 0.5197 1.9488 0.5894 2.0815 0.7606 2.3235 1.3220 1.8575
10 1.9490 0.5040 1.9870 0.5380 2.0680 0.6200 2.2110 0.8100 2.4850 1.4150
Table 9-3 1-dB Chebyshev Filter Table
Filter Order Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
F S F Q F S F Q F S F Q F S F Q F S F Q
2 1.0500 0.9565
3 0.9971 2.0176 0.4942
4 0.5286 0.7845 0.9932 3.5600
5 0.6552 1.3988 0.9941 5.5538 0.2895
6 0.3532 0.7608 0.7468 2.1977 0.9953 8.0012
7 0.4800 1.2967 0.8084 3.1554 0.9963 10.9010 0.2054
8 0.2651 0.7530 0.5838 1.9564 0.5538 2.7776 0.9971 14.2445
9 0.3812 1.1964 0.6623 2.7119 0.8805 5.5239 0.9976 18.0069 0.1593
10 0.2121 0.7495 0.4760 1.8639 0.7214 3.5609 0.9024 6.9419 0.9981 22.2779
Table 9-4 3-dB Chebyshev Filter Table
Filter Order Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
F S F Q F S F Q F S F Q F S F Q F S F Q
2 0.8414 1.3049
3 0.9160 3.0678 0.2986
4 0.4426 1.0765 0.9503 5.5770
5 0.6140 2.1380 0.9675 8.8111 0.1775
6 0.2980 1.0441 0.7224 3.4597 0.9771 12.7899
7 0.4519 1.9821 0.7920 5.0193 0.9831 17.4929 0.1265
8 0.2228 1.0558 0.5665 3.0789 0.8388 6.8302 0.9870 22.8481
9 0.3559 1.9278 0.6503 4.3179 0.8716 8.8756 0.9897 28.9400 0.0983
10 0.1796 1.0289 0.4626 2.9350 0.7126 5.7012 0.8954 11.1646 0.9916 35.9274