SLOA341 October   2024 LOG300

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Description
    1. 2.1 Basics of Ultrasound Sensing
    2. 2.2 Advantages and Disadvantages of Ultrasonic Sensing
    3. 2.3 Ultrasonic Transducer
      1. 2.3.1 Transducer Construction
      2. 2.3.2 Transducer Frequencies
    4. 2.4 Transducer Topologies
    5. 2.5 Blind Zone Effect on Minimum Distance
    6. 2.6 Transducer Drive
    7. 2.7 Ultrasonic Echo and Signal Processing
      1. 2.7.1 Digital Gain or Fixed Gain
      2. 2.7.2 Time-Varying-Gain
      3. 2.7.3 Automatic Gain Control or Logarithmic Amplifier
      4. 2.7.4 Logarithmic Amplifier vs Logarithmic Detector
  6. 3LOG Detector Amplifier and the Advantages Over Conventional Opamps
  7. 4Application
    1. 4.1 Double Paper Feed and Paper Thickness Detector
      1. 4.1.1 Schematic Implementation
      2. 4.1.2 Material Thickness Detector
    2. 4.2 Bubble Detector
    3. 4.3 Material Detection
    4. 4.4 Distance or Proximity Detection
  8. 5Summary
  9. 6References

Advantages and Disadvantages of Ultrasonic Sensing

Ultrasonic sensing has several advantages over other sensing technique like IR based. The US transducer can be made with water-proof enclosure and hence are resistant to moisture and rain. The US transducer also have robust performance through dirt, dust, and debris and can operate at both high and low temperature.

Unlike IR based sensor, the US transducer can detect both opaque and transparent object with same accuracy and are equal sensitivity to both light and dark colored object

Nevertheless, there is one major disadvantage of US sensing, the US sensing is generally unable to detect objects with similar acoustic impedance to transmission medium. For example, in an air-coupled application, the ultrasonic energy can pass through, be absorbed, or scattered by soft, low-density objects.