SLOS412E April   2003  – November 2024 RC4580

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Operating Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Unity-Gain Bandwidth
      2. 6.3.2 Common-Mode Rejection Ratio
      3. 6.3.3 Slew Rate
    4. 6.4 Device Functional Mode
  8. Application and Implementation
    1. 7.1 Typical Application
      1. 7.1.1 Design Requirements
      2. 7.1.2 Detailed Design Procedure
        1. 7.1.2.1 Amplifier Selection
        2. 7.1.2.2 Passive Component Selection
      3. 7.1.3 Application Curves
    2. 7.2 Power Supply Recommendations
    3. 7.3 Layout
      1. 7.3.1 Layout Guidelines
      2. 7.3.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Application Curves

The measured transfer functions in Figure 7-2, Figure 7-3, and Figure 7-4 were generated by sweeping the input voltage from 0V to 12V. However, this design should only be used between 2V and 10V for optimum linearity.

RC4580 Differential Output Voltage vs Input VoltageFigure 7-2 Differential Output Voltage vs Input Voltage
RC4580 Positive Output Voltage vs Input VoltageFigure 7-4 Positive Output Voltage vs Input Voltage
RC4580 Positive Output Voltage vs Input VoltageFigure 7-3 Positive Output Voltage vs Input Voltage