SLUAAL2 june   2023 UCC256402 , UCC256403 , UCC256404

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1UCC25640x Frequently Asked Questions
    1. 1.1  For the Time Domain Simulation and Fundamental Harmonic Analysis of LLC Resonant Converters, What Model of the Transformer Should be Used?
      1. 1.1.1 LLC Design Using T Type Transformer Model
    2. 1.2  How to Connect External Gate Drivers to the UCC25640x for High Gate Driver Current Capability?
    3. 1.3  When Powering on the PFC-LLC AC-DC Converter, What Sequence is Recommended?
    4. 1.4  How to Eliminate the Nuisance ZCS Detection During the Light Load?
    5. 1.5  What is the Purpose of Maintaining the FB Pin Voltage of the UCC25640x Controllers at a Constant Level?
    6. 1.6  How to Improve the Slew Rate Detection at HS Pin of the UCC25640x Controller?
    7. 1.7  How to Operate the UCC25640x Controller in the Open Loop?
    8. 1.8  What Happens if the VCR Pin Peak to Peak Voltage of the Controller Exceeds 6 V?
    9. 1.9  What UCC25640x settings effect the startup duration of the LLC?
    10. 1.10 What is Causing the Current Imbalance in the LLC's Secondary Side Windings?
    11. 1.11 How to Design TL431 Compensator for LLC With UCC25640x Controller
      1. 1.11.1 LLC Plant Transfer Function Under HHC Control
      2. 1.11.2 Type 2 and Type 3 Compensator with TL431 [20]
        1. 1.11.2.1 Type 2 Compensator
        2. 1.11.2.2 Type 2 Compensator Without Fast Lane
        3. 1.11.2.3 Type 3 Compensator with Fast Lane
        4. 1.11.2.4 Type 3 Compensator Without Fast Lane
      3. 1.11.3 Type 3 Compensator Design Example
    12. 1.12 How to Design LLC for Battery Charging and LED Driver Applications?
      1. 1.12.1 LED Driver Design Example
      2. 1.12.2 Battery Charger Design Example
    13. 1.13 How to Implement CC-CV Feedback Control?
      1. 1.13.1 Voltage Feedback Loop (Type 2) Transfer Function
      2. 1.13.2 Current Feedback Loop (Type 2) Transfer Function
    14. 1.14 What is the Simplest Approach to Configure the Burst Mode Thresholds for UCC25640x Based on the Load Power?
    15. 1.15 How to Avoid the UCC25640x Controller to Enter into Burst Mode?
    16. 1.16 What are the Methods for Preventing VCC From Decreasing Below the VCC Restart Threshold During Burst Mode?
    17. 1.17 How Does BMTL Threshold Value Impacts the Output Voltage Ripple and the VCC Pin Voltage and Magnetizing Current?
    18. 1.18 How to Design Magnetics for LLC?
      1. 1.18.1 LLC Resonant Inductor Design
      2. 1.18.2 LLC Transformer Design
    19. 1.19 How is the Dead Time in UCC25640x Determined During ZCS Detection and in the Absence of Valid Slew Rate Detection?
  5. 2References

LLC Transformer Design

Step 1: LLC Center-Tapped Transformer Specifications

Equation 115. Magnetizing Inductance value of the transformer  L m = 510 u H
Equation 116. Turns ratio from primary to secondary  n = 16.5
Equation 117. Forward voltage drop of the secondary diode  V f = 0.7 V
Equation 118. At minimum Input voltage (365V) and at maximum output power (12V,15A):       Peak current of the magnetizing inductor  I m p _ max = 1.15 A         RMS current of the magnetizing inductor  I m r m s _ max = 0.74 A       Peak current of the primary winding  I p _ max = 1.9 A         RMS current of the primary winding  I p r m s _ max = 1.27 A       Peak current of the each secondary winding  I s _ max = 32.2 A         RMS current of the each secondary winding  I s r m s _ max = 13.65 A          Switching frequency  f s w _ min = 77 k H z
Equation 119. At Rated Input voltage (390V) and at maximum output power (12V,15A):       Peak current of the magnetizing inductor  I m p = 1.1 A         RMS current of the magnetizing inductor  I m r m s = 0.68 A       Peak current of the primary winding  I p = 1.78 A         RMS current of the primary winding  I p r m s = 1.22 A       Peak current of the each secondary winding  I s = 28.9 A         RMS current of the each secondary winding  I s r m s = 13 A          Switching frequency  f s w = 88 k H z

Step 2: Pick a Core Based on the Output Power

Equation 120. Area Product of a core  A p = W a A c = n = 1 m I n V n J r m s _ n 4 K u f s w B m ( m 4 )  

[Equation 11.12 in Reference 16]

Equation 121. where  W a  is window area,  A c  is core area 
Equation 122. I n  is rms value of the current through the n th  winding
Equation 123. V n  is rms value of the voltage across the n th  winding
Equation 124. J r m s _ n  is rms value of the current density of the n th  winding:  4   t o  6 A / m m 2
Equation 125. K u  is window utilization factor (For Litz wire it is : 0 .3 to 0 .4)
Equation 126. B m  is peak flux density of the core 

Bm should be chosen such that at the operating frequency, core loss power density should be less than 150 mW/cm3 for natural convection cooling.

In general, suggested magnetic materials for reducing core losses are 3C95, 3F4 from Ferroxcube (Ferroxcube Cores and Accessories) and PC47, PC90, PC95 from TDK ( TDK Cores and Accessories).

Equation 127. For  K u = 0.3 ,   J r m s _ p = 5 A / m m 2 , J r m s _ s = 6 A / m m 2 ,   B m = 0.15 T ,   A p 6476.9 m m 4  

For this design, PQ26/25 core with 3C95 material is selected. This core's effective cross section area A c = 120 m m 2 (Ferroxcube PQ26/25 core data sheet) and minimum winding area, mean turn length are W a = 50.97 m m 2 , M L T = 56.2 m m (Ferroxcube PQ26/25 bobbin data sheet). Cores, Bobbin, Clamp can be obtained at PQ26/25 with 3C95, PQ26/25 Bobbin, Clamp for PQ26/25 Core.

Step 3: Turns and airgap calculation

Equation 128. N p × A c × ( 2 × B m ) = n × ( V o + V f ) 2 × f s w
Equation 129. N p = 16.5 × ( 12 + 0.7 ) 120 × 10 6 × 2 × 0.15 × 2 × 88 × 10 3 = 33.0729
Equation 130. N s = N p n = 33.07 16.5 = 2.0044
Equation 131. Lets consider primary number of turns ( N p ) and secondary number of turns ( N s ) as 33 and 2 respectively .
Equation 132. The air-gap length is  l g = μ o A c N p 2 L m = 4 π × 10 7 × 120 × 10 3 × 33 2 510 × 10 6 = 0.32 m m

Step 4: Wire selection for both primary and secondary

Equation 133. The effective cross-sectional area of the bare winding of the primary should be  A w p = I p r m s J r m s = 1.22 5 = 0.244 m m 2
Equation 134. AWG23 has a copper area about 0 .2558 m m 2  which is closest to required copper area
Equation 135. In general, for high frequency (around 100kHz) designs, AWG38-42 should be selected for each strand .
Equation 136. The skin depth of copper at  88 k H z  is  δ w = 66.2 f   ( m m )  =  66.2 88 , 000 =   0.2232 m m

[Equation 10.148 in Reference 16]

Equation 137. Here AWG 38 is chosen with 30 strands for following reasons: 
Equation 138.       1 . Its over all copper area ( 0.2432 m m 2 ) is closest to required copper area
Equation 139.       2 . Each strand diameter is much less than skin depth so that current through the each strand will be uniform
Equation 140.       3 . And its readily available

(Litz Wire Data from MWS Wire Industries)

Equation 141. So the actual current density would be  J p _ a c t = 1.22 0.2432 = 5.01 A m m 2
Equation 142. With insulation, the overall diameter ( d o p ) of the  S E R V E D   L I T Z   W I R E  of  38 A W G  with 30 strands is 0 .7874mm
Equation 143. Area required by the primary winding  =   N p × π × d o p 2 4 = 33 × π × 0.7874 2 4 = 16.0692 m m 2
Equation 144. For the each secondary winding, the effective cross-sectional area of the bare winding  of the each secondary should be  A w s = I s r m s J r m s = 13 6 = 2.167 m m 2
Equation 145. AWG14 has a copper area about 2 .082 m m 2  which is closest to required copper area .
Equation 146. Here AWG38 with 260 strands are considered for each secondary winding which has a bare copper about 2 .1078 m m 2
Equation 147. So the actual current density of the each secondary winding would be  J s _ a c t = 13 2 .1078 = 6.16 A m m 2
Equation 148. With insulation, the overall diameter ( d o s ) of the  U N S E R V E D   L I T Z   W I R E  of  38 A W G  with 260 strands is 2 .286mm

(Litz Wire Data from Remington Industries, Digikey Link)

Equation 149. Area required by the each secondary winding  =   N s × π × d o s 2 4 = 2 × π × 2.286 2 4 = 8.2087 m m 2
Equation 150. Window utilization factor  K u = A r e a   o c c u p i e d   b y   e a c h   w i n d i n g O v e r a l l   W i n d o w   A r e a = 16.0692 + 8.2087 + 8.2087 50.97 = 0.637

Step 5: Wire Loss Calculation with Interleaved Winding

Equation 151. The winding width of the bobbin is 13 .56mm

(Ferroxcube PQ26/25 bobbin datasheet)

Equation 152. In primary, since there are 33 bundle turns with 0 .7874mm over all diameter, total number of  bundled winding layers ( N p l ) would be 2 .
Equation 153. Each bundle has a total number of strands  k p   = 30
Equation 154. The strands in each bundle are modelled as a square with  k p = 30 6  strands on each side of the bundle
Equation 155. The total number of strands in each layer is given as  N p s l = the number of bundle turns in a layer  ×  number of strands of each side of the square bundle = 17 × 6 = 102
Equation 156. The mean length of each turn is  l T = 56.2 m m

(Ferroxcube PQ26/25 bobbin datasheet)

Equation 157. The DC resistance of the single AWG38 strand is  R w D C s = l T × A W G 38  DC resistance per m = 56.2 m m × 2.1266   Ω / m = 119.5 m Ω
Equation 158. The AC power loss of a single layer is given by  P a c =  DC power loss of a single layer × φ × Q ' ( φ , m )

[Equation 10.80 in Reference 9]

Equation 159. Here  φ = η π 4 d s δ   where  η  is porosity factor,  d s  is strand bare wire diameter,  δ  is skin depth for a given frequency

[Equation 10.74 in Reference 9]

Equation 160. Q ' ( φ , m ) = ( 2 m 2 2 m + 1 ) G 1 ( φ ) 4 m ( m 1 ) G 2 ( φ )

[Equation 10.81 in Reference 9]

Equation 161. G 1 ( φ ) = sinh ( 2 φ ) + sin ( 2 φ ) cosh ( 2 φ ) - cos ( 2 φ ) G 2 ( φ ) = sinh ( φ ) cos ( φ ) + cosh ( φ ) sin ( φ ) cosh ( 2 φ ) - cos ( 2 φ )

[Equation 10.76 in Reference 9]

Equation 162. m for each layer can be found by  m = m m f ( h ) m m f ( h ) m m f ( 0 ) where h is thickness of each layer

[Equation 10.81 in Reference 9]

Equation 163. In this design example, the DC power loss of a single layer of the primary is given as = square of the RMS current through each strand × DC resistance of a single strand × total number of strands in a single layer = I r m s k 2 × R w D C s × N p s l = 1.22 30 2 × 119.5 m Ω × 102 = 20.6 m W
Equation 164. Porosity factor η p = Number of strands per layer ( N p s l ) × S trand diameter with insulation width of the bobbin = 102 × 0.124 m m 13 .56mm = 0.933
Equation 165. For each of the secondary winding, since there are 2 bundle turns each with 2 .286mm over all diameter,  total number of bundled winding layers ( N s 1 l ,   N s 2 l ) would be 1 .
Equation 166. Each secondary winding bundle has a total number of strands  k s   = 260
Equation 167. The strands in each bundle are modelled as a square with  k s = 260 16  strands on each side of the bundle
Equation 168. The total number of strands in each layer of the secondary is given as  N s s l = The number of bundle turns in a layer  ×  number of strands of each side of the square bundle = 2 × 16 = 32
Equation 169. The DC resistance of the single AWG38 strand of the secondary is  R w D C s = l T × A W G 38  DC resistance per m = 56.2 m m × 2.1266   Ω / m = 119.5 m Ω
Equation 170. The DC power loss of a single layer of the secondary is given as = square of the RMS current through each strand × DC resistance of a single strand × total number of strands in a single layer = I r m s k 2 × R w D C s × N s s l = 13 260 2 × 119.5 m Ω × 32 = 9.56 m W
Equation 171. Porosity factor η s = Number of strands per layer ( N s s l ) × S trand diameter with insulation width of the bobbin = 32 × 0.124 m m 13 .56mm = 0.3
Equation 172. So, layer sequence would be           1 . 1st bundle layer of the primary winding           2 . Secondry-1 bundle layer           3 . Secondry-2 bundle layer           4 . 2nd bundle layer of the primary winding 
Equation 173. For Primary,  φ p = η π 4 d s δ = 0.933 π 4 0.1007 0.2232 = 0.386
Equation 174. For Secondary,  φ s = η π 4 d s δ = 0.3 π 4 0.1007 0.2232 = 0.219
Equation 175. MMF due to the each layer of the primary = current through each strand × number of strands in a layer = I p r m s k p × N p s l
Equation 176. S o ,  layer 1's m value can be determined by  m = I p r m s k p × N p s l I p r m s k p × N p s l - 0 = 1
Equation 177. Layer 2's m value can be determined by  m = 2 I p r m s k p × N p s l 2 I p r m s k p × N p s l - I p r m s k p × N p s l = 2
Equation 178. Similarly, m value for other adjacent layers increases by 1 . Since there are 6 layers for the first  bundled primary, m value increases upto 6 .
Equation 179. Same method has been followed to find out the m value for other layers
Equation 180. The copper loss of all the layers in the primary is given by  P p w = DC power loss of a single layer of the primary × m = 1 6 φ Q ' ( φ , m ) + m = 8.043 3.043 φ Q ' ( φ , m ) = 295 m W
Equation 181. The copper loss of all the layers in the secondary1 is given by  P s w 1 = DC power loss of a single layer of the secondary1 × m = 11.763 3.237 φ Q ' ( φ , m ) = 158 m W
Equation 182. The copper loss of all the layers in the secondary2 is given by  P s w 2 = DC power loss of a single layer of the secondary2 × m = 4.237 19.237 φ Q ' ( φ , m ) = 170 m W
Equation 183. Total copper losses P w = P p w + P s w 1 + P s w 2 = 295 m W + 158 m W + 170 m W = 0.623 m W

Step 6: Flux Density and Core-Loss Calculation

Equation 184. The amplitude of the core magnetic flux density at rated input voltage is  B m = L m I m p N p A c = 510 × 10 6 × 1.1 33 × 120 × 10 6 = 0.142 T
Equation 185. The core loss per unit volume ( P v ) at  0.142 T ,   88 k H z  is  130 m W / c m 3
Equation 186. The total core loss is  P C = V C P v = 130 m W / c m 3 × 6530 m m 3 = 848 m W
Equation 187. The amplitude of the core magnetic flux density at minimum input voltage is  B m _ max = L m I m p _ max N p A c = 510 × 10 6 × 1.15 33 × 120 × 10 6 = 0.148 T
Equation 188. At worst case current,  B m _ max  is less than saturation flux density of the ferrite material .

Step 7: Temperature rise and Bobbin Fit Calculations

Equation 189. Total power loss of the transformer is  P w c = P w + P C = 1.472 W
Equation 190. The surface area of  PQ26/25 core is  A t = 32.6 c m 2

Table 3-39

Equation 191. The surface power loss density is  ψ = P w c A t = 1.472 W 32.6 c m 2 = 0.045 W / c m 2
Equation 192. The temperature rise of the transformer is  Δ T = 450 ψ 0.826 = 450 × 0.045 W / c m 2 0.826 = 34.7   o C

[Equation 10.193 in Reference 16]

Equation 193. The actual core window utilization factor is  K u = A r e a   o c c u p i e d   b y   e a c h   w i n d i n g O v e r a l l   W i n d o w   A r e a = 16.0692 + 8.2087 + 8.2087 50.97 = 0.637