SLUS720F February   2007  – June 2019 TPS40195

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Application Diagram
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Electrical Characteristics
    5. 7.5 Dissipation Ratings
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Enable Functionality
      2. 8.3.2  Voltage Reference
      3. 8.3.3  Oscillator and Synchronization
      4. 8.3.4  Undervoltage Lockout (UVLO)
      5. 8.3.5  Soft Start
      6. 8.3.6  Selecting the Short Circuit Threshold
      7. 8.3.7  5-V Regulator
      8. 8.3.8  Prebias Start-up
      9. 8.3.9  Drivers
      10. 8.3.10 Power Good
      11. 8.3.11 Thermal Shutdown
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Typical Application 1
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Output Inductor, LOUT
          2. 9.2.1.2.2 Output Capacitor, COUT
          3. 9.2.1.2.3 Input Capacitor, CIN
          4. 9.2.1.2.4 Switching MOSFET, QSW
          5. 9.2.1.2.5 Rectifier MOSFET, QSR
          6. 9.2.1.2.6 Component Selection for the TPS40195
            1. 9.2.1.2.6.1 Timing Resistor, RT
            2. 9.2.1.2.6.2 Setting UVLO
            3. 9.2.1.2.6.3 Setting the Soft-Start Time
            4. 9.2.1.2.6.4 Short-Circuit Protection, RILIM
            5. 9.2.1.2.6.5 Voltage Decoupling Capacitors, CBP, and CVDD
            6. 9.2.1.2.6.6 Boost Voltage, CBOOST and DBOOST (optional)
            7. 9.2.1.2.6.7 Closing the Feedback Loop RZ1, RP1, RPZ2, RSET1, RSET2, CZ2, CP2 AND CPZ1
          7. 9.2.1.2.7 Application Curve
      2. 9.2.2 Typical Application 2
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Typical Application 3
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curves
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Device Support
      1. 11.2.1 Related Parts
    3. 11.3 Documentation Support
      1. 11.3.1 Related Documentation
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Community Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

5-V Regulator

This device has an on board 5-V regulator that allows the parts to operate from a single voltage feed. No separate 5-V feed to the part is required. This regulator requires a minimum of 1 μF of capacitance on the BP pin for stability. A ceramic capacitor is suggested for this purpose. Noise performance can be improved by increasing this capacitance to 4.7 μF when driving FETs with more than 25-nC gate charge requirements.

This regulator can also be used to supply power to nearby circuitry, eliminating the need for a separate LDO in some cases. If this pin is used for external loads, be aware that this is the power supply for the internals of the TPS40195. While efforts have been made to reduce sensitivity, any noise induced on this line has an adverse effect on the overall performance of the internal circuitry and shows up as increased pulse jitter, or skewed reference voltage. Note that when the EN pin is pulled low, the BP regulator will be turned off and not available to supply power to external loads.

The amount of power available from this pin varies with the size of the power MOSFETs that the drivers must operate. Larger MOSFETs require more gate drive current and reduces the amount of power available on this pin for other tasks.