SLUSAM9E July 2011 – April 2020 BQ76925
PRODUCTION DATA.
In addition to STANDBY, there is also a SLEEP mode. In SLEEP mode the Host orders the BQ76925 device to shutdown all internal circuitry and all functions including the LDO regulator. The device consumes a minimal amount of current (< 1.5 μA) in SLEEP mode due only to leakage and powering of the wake-up detection circuitry.
SLEEP mode is entered by writing a ‘1’ to the SLEEP bit in the POWER_CTL register. Wake-up is achieved by pulling up the ALERT pin; however, the wake-up circuitry is not armed until the voltage at V3P3 drops to approximately 0 V. To facilitate the discharge of V3P3, an internal 3-kΩ pulldown resistor is connected from V3P3 to VSS during the time that sleep mode is active. Once V3P3 is discharged, the BQ76925 may be awakened by pulling the ALERT pin above VWAKE (2-V maximum).
The SLEEP_DIS bit in the POWER_CTL register acts as an override to the SLEEP function. When SLEEP_DIS is set to ‘1’, writing the SLEEP bit has no effect (that is, SLEEP mode cannot be entered). If SLEEP_DIS is set after SLEEP mode has been entered, the device will immediately exit SLEEP mode. This scenario can arise if SLEEP_DIS is set after SLEEP is set, but before V3P3 has discharged below a valid operating voltage. This scenario can also occur if the V3P3 pin is held up by external circuitry and not allowed to fully discharge.
If the overcurrent alert function is not used, the ALERT pin can function as a dedicated wake-up pin. Otherwise, the ALERT pin will normally be pulled up to the LDO voltage, so care must be taken in the system design so that the wake-up signal does not interfere with proper operation of the regulator.