SLUSD48C July   2018  – March 2022 UCC24624

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description, Continued
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power Management
      2. 8.3.2 Synchronous Rectifier Control
      3. 8.3.3 Turn-off Threshold Adjustment
      4. 8.3.4 Noise Immunity
        1. 8.3.4.1 On-Time Blanking
        2. 8.3.4.2 Off-Time Blanking
        3. 8.3.4.3 Two-Channel Interlock
        4. 8.3.4.4 SR Turn-on Re-arm
        5. 8.3.4.5 Adaptive Turn-on Delay
      5. 8.3.5 Gate Voltage Clamping
      6. 8.3.6 Standby Mode
    4. 8.4 Device Functional Modes
      1. 8.4.1 UVLO Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Run Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 MOSFET Selection
        2. 9.2.2.2 Snubber Design
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Custom Design With WEBENCH® Tools
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks

Run Mode

Run mode is the normal operating mode of the controller, when not in UVLO mode, or standby mode. In this mode, VDD current is higher because all internal control and timing functions are operating and the VG1 and VG2 outputs are driving the MOSFETs for synchronous rectification. VDD current is the sum of IVDDRUN plus the average current necessary to drive the load on the VG1 and VG2 outputs. The VG1 and VG2 voltages are automatically adjusted based on the SR MOSFET drain-to-source voltages. Before REG pin voltage reaches VREGON threshold, one of the drain-to-source voltages (VD1 or VD2) must switch above VTHARM for proper switching of VG1 and VG2 outputs. This can be easily achieved by powering up the VDD from the output of the LLC or switching the LLC first before REG pin voltage reaches VREGON threshold.